Calibration of the Chandra On-Axis PSF

Chandra User's Committee Presentation 31 January 2002

Terry Gaetz CXC/SAO

On-axis PSF

- PSF core ($\leq 90\%$ encircled energy)
 - low frequency mirror figure errors; misalignments
- PSF wings
 - scattering from mirror microroughness (high frequency errors)
 - low level (especially at low energies); requires bright source to see wings above background, leading to pile-up for ACIS detectors.

Calibration Aims

- Qualitative
 - PSF shape "is my source extended?"
- Quantitative
 - PSF as "background"; need accurate subtraction, *e.g.*, extracting an X-ray dust scattering halo.
 - need: shape, absolute normalization, as function of E.

Wing Scan Data

- Surface brightness sampled with pinholes
 - $D_{ap} = 1, 4, 10, 20, 35$ mm diameter
 - up to 6 off-axis offsets $(\pm 1, \pm 2, \pm 3) D_{ap}$; $(\theta \gtrsim 10'')$.
 - isolated quadrants of individual mirror pairs using shutters
 - HRMA tilted to approximate on-orbit graze angles
 - sampled selected mirror-pair quadrants at 0.277, 1.49, 4.51, 5.41, 6.4, 8.08 keV
- mirror-pair/energy combinations (Mirror pair 1 is largest, 6 is smallest):
 - Mirror pair 1: 1.49 , 4.51 keV
 - Mirror pair 3: 1.49 , 4.51 , 5.41 , 6.4 keV
 - Mirror pair 4: 1.49, 4.51, 5.41, 6.4, 8.08 keV
 - Mirror pair 6: 0.277 , 1.49 , 4.51 , 5.41 , 6.4 , 8.08 keV

Analysis strategy:

- Evaluate and fit PSD's (surface roughness functions) for each mirror pair:
 - evaluate normalized mirror pair surface brightness profiles (for each energy)
 - combine surface brightness data from different energies to estimate the PSD (surface roughness function) *vs.* roughness spatial frequency for each mirror pair.
 - fit the PSD for each mirror pair
- Use individual mirror pair PSD fits to evaluate HRMA surface brightness profile; for a given energy :
 - evaluate the normalized surface brightness profile for the mirror pair
 - add the profiles, weighted by the fraction of total effective area.
- This procedure allows interpolation to different energies

Figure 1: PSD $(2W_1)$ data and fits for individual mirror pairs

Figure 2: Model HRMA surface brightness profiles based on mirror pair PSD's

Figure 3: Modeled HRMA surface brightness profile vs. data (E = 1.486 keV)

Figure 4: Modeled HRMA surface brightness profile vs. data (E = 6.4 keV)

On-Orbit Data

- obsid 01712: 3C273 on ACIS-S3
 - failed grating insertion
 - $\sim 30 \text{ ks}$ total, GTI $\sim \! 15 \text{ ks}$
 - $N_{HI} = 1.69 \times 10^{20} \text{ cm}^2$ (Lockman & Savage 1995, ApJS, 97, 1)
- obsid 01422: LMC X-1 on ACIS-I
 - $\sim 4 \text{ ks}$ total, GTI $\sim 4 \text{ ks}$
 - $N_H \simeq 10^{22} \text{ cm}^2$; 2.9% dust X-ray halo reported (Predehl & Schmitt 1995, A&A, 293, 889)
 - complex field, e.g. SNR 0540-6944 within a few arcmin (Williams et al. 2000, ApJL, 536, L27)
- obsid 01385: AR Lac on HRC-I
 - $\sim \! 19 \, \mathrm{ks}$ total, GTI $\sim \! 19 \, \mathrm{ks}$
 - $N_{HI} = (5.9 \pm 2.5) \times 10^{18} \text{ cm}^2$ (Rodonò *et al.* 1999, A&A, **346**, 811)

Figure 5: Surface brightness: 3C273 data (ACIS-S3) vs. HRMA model based on PSD's

Figure 6: Surface brightness: LMC X-1 data (ACIS-I) vs. HRMA model based on PSD's

HRMA PSF – Core and Inner Wings

- AR Lac, Obsid 1385
- Note: systematic residual position offsets in HRC event position reconstruction
 - depends on where on the tile the X-ray landed;
 - adds several-pixel blur.
 - overview of some of the issues: M. Juda memo: http://hea-www.harvard.edu/juda/memos/hrc_blur/hrc_blur.html
- apply an ad-hoc correction for residual HRC position errors:
 - assume AR Lac is a point source
 - aspect residuals are random in direction and uncorrelated.
 - For details of the correction, see the D. Jerius presentation at the Oct. 2001 Calibration Review:

http://cxc.harvard.edu/cal/calreview/on-axis-psf.ps

- Good agreement between corrected data and raytrace simulation
- Caveats:
 - HRC has very little energy resolution
 - AR Lac is a fairly soft source; tests low energy PSF only

HRMA PSF – Core and Inner Wings

AR Lac [OBSID 1385]

Figure 7: Core and inner wings based on massaged AR Lac HRC data

HRMA PSF – $E\sim 1.5~{\rm keV}$

Figure 8: low energy surface brightness: $E\,\sim\,1.5~{\rm keV}$

HRMA PSF Wings - Issues

lssues

- normalization of wings
- need better statistics
- core-wing transition (as a function of energy)
 - core: \lesssim few arcsec
 - wings: $\gtrsim 10$ arcsec
- ground calibration systematics
 - quad shutter correction; tilt of HRMA; illumination pattern

Plans

- planned calibration observation for wings, either:
 - 100 ks observation of 3C273 on ACIS-I, using very faint mode to further reduce background; $N_{HI} \approx 1.7 \times 10^{20} \ {
 m cm}^2$.
 - shorter observation of Her X-1 on ACIS-I, using very faint mode [revised; was: graded mode]; $N_H \approx 10^{20} \text{ cm}^2$
- far core/near wings
 - search for on-axis intermediate strength sources on ACIS (for energy resolution); less pile-up gets us closer to the core.

HRMA PSF - Some caveats

Ground Calibration Data (XRCF)

- Backing out ground calibration effects, *e.g.*
 - Illumination of the optics is different than on-orbit; this emphasizes the smoother middle portion of the optics \implies expect profiles to somewhat underestimate the wings.
 - Normalization of the data points: assumed an approximate correction for the effects of the quadrant shutters; assumed to be exactly a factor of 2, but could vary depending on off-axis distance and direction (scattering to smaller or larger angles from the optic surface).
- Longer term:
 - iterative refinement of scattering model for raytrace to improve agreement with models; this will allow the ground effects & systematics to be backed out more reliably.

Sky data (ACIS)

- Provides an upper limits on wings
 - astrophysical effects (*e.g.*, dust scattering halos) can broaden the PSF; need "clean" lines of sight.
- Systematics, *e.g.*:
 - Depression of inner regions by detector pile-up effects.
 - Background subtraction uncertainties; vignetted vs. unvignetted background.
 - Evaluation of source rate for absolute normalization.