Introduction

PROBLEM: CTI (and detector gain in some CCDs) slowly changes with time.

PLAN:

- Effect on the ACIS response.
- Position and energy dependence.
- Effect on the response shape.
- Correction algorithm and validation.
- Software products.

ECS, I3, near aim point. Red: Feb-Apr, 2000. Black: Nov2002-Jan2003.

22-May-2003 17:37

Calibration data

- External cal source (ECS). Regular measurements, cover entire ACIS. No bright emission lines below 1.49 keV.
- E0102-72. Line-dominated SNR, observed twice a year to the low-energy
- (0.55 < E < 1.1 keV) ACIS gain. Small number of locations

energies by E0102-72 data. Approach: derive gain corrections from the ECS data and to verify their extrapolation to low

derived at 3 energies. Procedure: ECS spectra fit using an RMF adjusted to Feb-Apr 2000, gain corrections

Solid lines is 4-th order polynomial fits.

Black: Al (E = 1.49 keV), Blue: Ti (E = 4.51 keV) blue), Red: Mn (E = 5.89 keV).

Positional dependence

Energy dependence

CTI model predicts that charge loss $\propto E^{1/2}$. Including evolution of detector gain,

 $\Delta PHA = AE^{1/2} + BE$

I3, Node 2, Y=240: ∆PHA, ADU -20 -10 \bigcirc \bigcirc sqrt(E) \sim Y=240 Ś

I3, Node 2, Y=528: ∆PHA, ADU -20 -10 \bigcirc \bigcirc sqrt(E) \sim Y=528 Ś

I3, Node 2, Y=752: ∆PHA, ADU - 10 -20 \bigcirc \bigcirc sqrt(E) \sim Y=752 Ś

Fit procedure and correction algorithm

- $\Delta PHA = AE^{1/2} + BE$
- •
- In 10,11,13,S2,S3: fix B = 0, fit A at each location
- In I2: same B within each node, fit A at each location
- Use A and B to compute lookup tables $\Delta PHA(PHA)$ at each location.
- Correction:

$PHA' = PHA + \Delta PHA(PHA)$

N.B. This should be applied after the CTI correction (if applicable)

evolution of the detector gain. — 3-month time resolution is adequate S3. Each epoch spans 3 months starting February, 2000. Positive drift in I2 caused by the Gain changes (Δ PHA at PHA = 1500) at several representative locations in I2, I3, S2, and

ECS, I3, near aim point. Red: Feb-Apr, 2000. Black: Nov2002-Jan2003, corrected.

(No) change in the shape of the spectral response

Validation: ECS

yseg 0 Mean Standard CCD: 3, '% Diff' 27 29 30 NODE: 3 AlKa,1.487keV is defined as % Diff 0.129 0.161 **0.**148 **0.**175 0.256 0.101 0.087 0 087 0.007 054 0.081).101 (E_measured-E_nominal)/E_nominal*100% TiKa,4.510keV , 0 . -0.089 -0.111 -0.111 -0.222 -0.111 0.031 -0.111 -0.111 -0.097 -0.144 0.069 0 , Diff 120 % Diff -0.124 -0.117 -0--0.085 0 MnKa,5.898keV -0.073 -0.259 -0.070 -0.014 0.052 0.010 0.036 163 110

deviation

Validation: E0102-72

O_gain and Ne_gain are defined as E_measured/E_nominal for the O and Ne complexes.

OBSID 28840 28840 28840 28840 28840 28830 28837 28837 28837 28837 28837 28837 28837 28837 28837 28837 28837 28837 28837 28837 28837
VIII VIII VIII VIII VIII VIII VIII VII
chipx 257:512 256 213:768 513:768 513:768 513:768 513:768 513:768 513:768 513:768 513:768
chipy 513:544 97:128 481:512 449:480 513:544 513:544 481:512 449:480 449:480 449:480 449:480 449:480 449:480 673:704 897:128 97:128 481:512 481:512 481:512
0_gain 1.0075 1.0075 1.0075 1.0075 1.0075 1.0072 1.0073 1.0073 1.0073 1.0073 1.0073 1.0073 1.0073 1.0073 1.0073 1.0073 1.0073 1.0075 1.
Ne-gain 0.9970 1.0040 1.0040 1.0040 1.0060 1.0060 1.0060 1.0025 0.9970 1.0060 1.0085 1.0085 0.9970 0.9970 0.9970 0.9970 0.9970

Implementation Status

- ARD files prepared for I array, S2 and S3, tested for compatibility with CALDB.
- corr_tgain released on the software exchange page (June 5).
- correction works in internal versions of acis_process_events. Should be out in the next CIAO release.
- Note that the TGAIN correction is incompatible with the PSU CTI corrector, which accounts for time-dependence in a different way.