Allocating, Finding, and Correcting Systematic Errors
Instrumental Effective Areas

Herman L. Marshall
(MIT Kavli Institute)
Definitions 1

- **Statistical Errors (precision)**
 - Dominated by random processes
 - Estimator bias

- **Sample Errors**
 - Physical outliers (e.g., getting WDs in QSO sample)
 - Bad measurements: cosmic rays, dead pixels

- **Systematic Errors (accuracy)**
 - Errors in system modeling (calibration)
 - Allocate (allow for), find (discover), correct (fix)
 - Cockroaches: hunt down and exterminate
Definitions 2

Absolute Errors (0th moment)
- Affect physical values: flux, energy, location, etc.
- Allocate via modeling (inc. simulation)
- Correct for zero point bias: background, noise...
- Find, correct via external ref. (e.g. cross-cal)

Relative Errors (high order moments)
- Affect differences and ratios
 - Effective area: spectral slopes, line ratios
 - Energy scale: orbital velocities, cluster dispersion
- Alternative definition: relative is only a percentage
Role of Physical Models

- With physical model:
 - Positivity generally ensured
 - Extrapolation beyond data is more reliable
 - Sharp features can be modeled (e.g. edges)
 - No longer a systematic error....

- Correcting errors without physical model:
 - Keep it simple (Bayesian....)
 - Generally want basis functions (nondegenerate)
 - Powerlaw or Chebyshev polynomials used most
 - Fourier decomposition is intuitive
TREATMENT OF SYSTEMATIC ERRORS

- Not random, not Gaussian, not symmetric!
- Cannot “add in quadrature” with random errors
 - Exception: if system has uncorrectable excess noise
- Answers are biased: repeating doesn’t reduce error
- Often merely estimated — not precise!

Relative vs. Absolute
- Can eliminate one without fixing other
 - e.g. distortion correction v. mispointing telescope
 - e.g. flux of source with power law spectrum
- Relative error depends on $E, \lambda, t, x, \alpha, \ldots$
HETGS Effective Area

- **Simulation**
 - Model grating bars, facets, structure **physical**
 - Model implemented in *marx*

- **Ground Calibration**
 - Found model errors --> corrected efficiencies **physical**

- **Internal Flight Calibration**
 - MEG v. HEG --> corrected eff’s **non-physical**
 - Check +1 against -1 --> fix ACIS BI QE **physical**

- **Cross-calibration (with XMM)**
 - No problems yet.... **non-physical**
General Suggestions

- Fix systematic errors physically if possible
- Fix systematic errors by any means
- Assign possible systematic errors
 - give a range of validity
 - give correlation of systematic errors
- Develop experience database
 - systematic errors are everyone’s problems
 - communicate between users and correctors
 - keep public logs of issues, fixes