The HRMA User's Guide

T. J. Gaetz, D. Jerius

Chandra X-ray Center (SAO)
2004 October 26

HRMA General Properties

- Chandra X-ray mirrors: HRMA: "High Resolution mirror Assembly".
- 4 concentric Wolter-I telescopes
- MP1, 3, 4, 6 (large \Longleftrightarrow small); f-ratio: $\sim 8.4 \Longleftrightarrow \sim 15.7$
- Effective area:
- large drop at $\sim 2 \mathrm{keV}$ (Ir edge)
- Energy dependence: high energy dominated by smaller shells
- Focal plane curvature: individual shell focal planes curve toward mirrors
- smallest shell \rightarrow greatest curvature
- alignments and aberrations
- lateral parfocalization: good!
- axial parfocalization: $\sim 0.6 \mathrm{~mm}$ between MP1\&MP6; MP3\&MP4 in between.
- dominant off-axis aberration: tangential stretching intrinsic to Wolter-I
- significant "coma-free" decenter: minimal on-axis coma, but significant off-axis (θ, φ)-dependent aberrations. \Rightarrow bright PSF substructure;
- off-axis Wolter-I and "coma-free" decenter aberrations larger for smaller shells
- tilt: $\sim 0.6^{\prime \prime}$ diameter tilt ring in MP6; non-uniform and offset!

Schematic of the HRMA

HRMA and Shell Effective Areas

- large drop at $\sim 2 \mathrm{keV}$ (Ir edge)
- Energy dependence: high energy dominated by smaller shells

Shell Fractional Effective Area

Focal Planes

- Individual shell focal planes curve toward mirrors; smallest shell \Rightarrow greatest curvature; divergent focal planes!

HRMA Focal Plane - Energy Dependence

- high energy dominated by smaller shells; increasing curvature as E increases

Ideal HRMA Focal Plane vs. HRC-I Focal Plane

23.6' off-axis; log stretch

Anatomy of the On-Axis PSF: core/halo structure

- sharply peaked core: narrow; sub-arcsecond imaging ($\sim 0.5^{\prime \prime}$ FWHM)
- wings: faint diffuse energy-dependent halo extending to large angles

On-Axis PSF Core vs. Energy

- structure: combination of surface figure + misalignments
- MP6 structure dominates at high energies; PSF "puffed out"

	1"		1"		1"		1"		1"
E	\uparrow	E	\uparrow	E	\uparrow	E	\uparrow	-	\downarrow
0.25 keV		0.5 keV		1.0 keV		2.0 keV		3.0 keV	
	1"		1"		1"		1"		1"
E	\uparrow	-	\uparrow	-	\downarrow		\uparrow		
4.0 keV		5.0 keV		6.0 keV		7.0 keV		8.0 keV	

[simulated on-axis; HRC-I pixels; aspect blur included; linear stretch]

Anatomy of the Off-Axis PSF (simulation: 15.8^{\prime} off-axis)

- dominant aberration: tangential stretching of PSF; "cat's eye"; varies $\propto \varphi$
- "coma-free" decenter misalignment
\Rightarrow very high surface-brightness caustic features and asymmetric bulge; vary $\propto \varphi / 2$
- Extended envelope seen in deep off-axis images is PSF core

Off-Axis PSF Size

- PSF size
- increases with energy
- increase a bit less steeply than quadratically with θ

Off-Axis PSF (HRC-I focal plane)

5^{\prime} off-axis

10^{\prime} off-axis

$$
\varphi=105
$$

Off-axis angle

$$
\theta=10
$$

$$
\overleftrightarrow{10^{\prime \prime}}
$$

$\varphi=240$
$\varphi=195$

$\varphi=285$

$$
\varphi=60
$$

$$
\varphi=15
$$

$\varphi=330$

- PSF shape varies systematically with both θ and φ
- grows with θ; variable stretching and elongation as $\varphi / 2$ and φ

Off-Axis PSF Analysis Issues

- off-axis PSF varies systematically with θ and φ
- PSF size grows \lesssim quadratically with θ
- tangential elongation $(\propto \varphi)$; bright PSF substructure varies $\propto \varphi / 2$
\Rightarrow variable stretching and elongation with φ
- Energy dependence: high energies dominated by smaller shells
\Rightarrow larger PSF, more extreme aberrations as E increases
- possible confusions:
- mistake PSF aberration as source extent
- low count statistics: Poisson fluctuations
\Rightarrow high surface brightness substructure can look like multiple sources.
- verify expected PSF using ChaRT to raytrace the optics, and Marx to apply detector pixelization.

simulation: point source 6.9^{\prime} off-axis; 67 counts; ACIS pixels; linear stretch.

PSF Wings

- The HRMA PSF has a faint halo extending to large angles
- mirror scatter is E-dependent
- scattered spectrum \Rightarrow harder with increasing angle from the source

PSF wing profile - 1.0-2.0 keV

ROSAT PSPC fit: Boese 2000, A\&Ap 141, 507

PSF wing profiles - $3.0-4.0 \mathrm{keV}$

PSF diffuse wing spectra

- diffuse mirror scattering strongly energy dependent \Rightarrow hardening of diffuse scattering spectra with distance from source

Summary: Some PSF-related Analysis Issues

- On-axis PSF:
- Core: increasing size with increasing energy (MP6 effect)
- Wings: diffuse mirror scattering wings are energy dependent; diffuse scattered spectrum differs from that of the source
- Shadows: mirror support struts \& mirror support deformations $\Rightarrow 12$-fold symmetry; could be mistaken for source structure.
- Off-axis PSF:
- PSF size grows rapidly with off-axis angle
- strongly asymmetrical aberrations; E-dependent
- large range of surface brightness in off-axis PSF (core)
- very bright PSF substructure; clumpy, could be mistaken for source structure
- mirror support strut shadows could produce apparent source structure
- Single-reflection ghosts:
- very bright sources far off-axis can produce faint ghost arcs; suppressed inside $\sim 14^{\prime} \Rightarrow$ mainly an issue for brightest sources and largest detectors (HRC-I, HRC-S, ACIS-S)

