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ABSTRACT

The observation of a bright X-ray source by the Chandra X-ray Observatory's High Energy Transmission Grating
Spectrometer (HETGS) can be compromised by photon pile-up in the CCD leading to false absorption features
in the observed spectrum. A method for removing the e�ects of pile-up in a dispersed grating spectrum is
presented. The e�ectiveness of the technique is demonstrated through its application to the HETGS observation
of 4U 1636-53, a bright X-ray binary system.
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1. INTRODUCTION

Pile-up is a consequence of the �nite spatial and temporal resolution of a Charge Coupled Device (CCD), and
will occur when two or more photons participate in the same spatial and temporal resolution element. In such
a case, the detector will be unable to separately resolve the individual photons causing the ensuing event to
have a pulse-height (PHA) that is roughly the sum of the pulse-heights of the individual photon events in the
absence of pile-up. As a result, pile-up lowers the event detection rate and distorts the observed CCD PHA
spectrum towards higher energies.

A general method for correcting for CCD pile-up was previously given by the author.1 However that work
was not taylored to the speci�c case of pile-up of dispersed spectra. The goal of the current paper is to formulate
a pile-up model that is applicable to dispersive spectroscopy.

In the next section, the standard technique for the analysis of dispersed data not a�ected by pile-up is
reviewed. This section also serves to describe the notation and conventions used throughout this paper. The
formulation of the dispersive pile-up model follows in section 3. The e�ectiveness of the model is demonstrated
in section 4 through its application to a Chandra X-ray Observatory2 observation of 4U 1636-53, a bright X-ray
binary system. The paper is concluded in section 5 with a brief summary of the results of this work.

2. STANDARD ANALYSIS FORMALISM

This section provides a review of the standard technique for \ux-correcting" grating data in the absence of
pile-up e�ects.

The most fundamental equation of di�raction physics is the so-called grating equation,

m� = p sin �; (1)

which relates the di�raction angle � and the period p of the grating to the di�raction order m and wavelength �
of the di�racted photon. The above equation applies only to an ideal grating| one that is only approximately
achieved in nature. For a realistic grating, the di�raction process must be characterized by a probability
distribution that gives the probability for a di�racted photon of wavelength � to have a direction in a speci�ed
solid angle. Such a distribution is described below.

Rather than working in the natural (x; y) pixel coordinate system of the detector, it is preferable to use a
coordinate system that is better suited for the description of di�racted events. Hence, locations on the detector
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will be given in terms of a dispersion coordinate � and a cross-dispersion coordinate z. The origin of (�; z) system
is taken to be at the mean position for zeroth order events. Instead of using angular units for �, wavelength
units will be used by scaling the angular units by the grating period p. This choice of units eliminates p from
many of the subsequent equations, and has the feature that � corresponds to the �rst-order wavelength scale.
Assuming small angles, the grating equation can be expressed in these units as

m� = �: (2)

In this coordinate system, the normalized probability distribution described above can be written as

G(m)(�; z; �)d� dz; (3)

which gives the probability for an mth order di�racted photon with wavelength � to intersect the detector at
a dispersion coordinate between � and � + d�, and a cross-dispersion coordinate between z and z + dz. For a
�xed wavelength �, the distribution G(m)(�; z; �) is strongly peaked about z = 0 and the value of � satisfying
the grating equation, i.e., � = m�.

Important related quantities are the Line Spread Function (LSF) and the cross-dispersion Encircled Energy
Fraction (EEF). The mth order cross-dispersion EEF for the region between z1 and z2 is de�ned as

f (m)(�; z1; z2) =

Z 1

�1

d�

Z z2

z1

dz G(m)(�; z; �): (4)

The LSF for this region is de�ned as

L(�; �; z1; z2) =
1

f (m)(�; z1; z2)

Z z2

z1

dz G(m)(�; z; �); (5)

and by construction, satis�es the normalization condition

1 =

Z 1

�1

d�L(�; �; z1; z2): (6)

In several places throughout this paper integrals of the form

Z
d�

Z �+��=2

����=2

d�0
Z z2

z1

dz G(m)(�0; z; �) (7)

will be encountered. Such integrals can written in terms of the EEF by observing that if �� is small, then
because of the sharpness of G(m)(�0; z; �), only a narrow range of wavelengths near �=m will actually contribute
to the integral. For this small range, the function G(m)(�; z; �) may be assumed to be translation-invariant such
that it can be regarded as a function of ���, i.e., G(m)(���; z). By making the appropriate change of variables,
it is easy to show the equality

f (m)(�=m; z1; z2)�� =

Z
d�

Z �+��

�

d�0
Z z2

z1

dz G(m)(�0; z; �): (8)

Now consider a point source with a spectrum s(�) de�ned such that s(�)d� gives the number of photons
per cm2 per second with wavelengths between � and �+ d� incident upon the telescope. Suppose that events
from such a source are extracted from a rectangular region (in di�raction coordinates) with a cross-dispersion
width w centered upon z = 0, and with the dispersion coordinate � binned in units of ��. Let 
i denote the
ith such bin, i.e., the bin containing events with i�� � � < (i+ 1)�� and �w=2 � z < w=2. In the absence of
pile-up, the expected number of events in this bin with pulse-height h is given by

C
i(h) =
X
m

C
(m)

i

(h); (9)
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where3

C
(m)

i

(h) = (N�)

Z
d� G

(m)

i

(�)A(m)(h; �)s(�); (10)

and

G
(m)

i

(�) =

Z (i+1)��

i��

d�

Z w=2

�w=2

dz G(m)(�; z; �): (11)

Here, C
(m)

i

(h) represents the mth order di�racted \counts" spectrum, which gives the number of mth order

events with pulse-height h expected in the ith bin. The quantity A(m)(h; �) represents the e�ective area
associated with a photon of wavelength � di�racted into the mth order to produce an event with pulse-height
h. The total exposure time is given by (N�), where N represents the number of CCD frames, and � is the CCD
frame-time, i.e., the time of each individual CCD frame.

If the CCD has enough intrinsic energy resolution as does a Chandra ACIS CCD, and the bins 
i are small
enough, one could exploit the correlation between the pulse-height of an event and the energy of the incident

photon to extract mth order events from a bin. Call the total number of such events C
(m)

i

. Also denote

A(m)(�) to be the e�ective area modi�ed by the pulse-height �lter implied by this order-sorting process.3 The
relationship between these quantities may be written as

C
(m)

i

= (N�)

Z
d� G

(m)

i

(�)A(m)(�)s(�): (12)

Owing to the strongly peaked nature of G
(m)

i

(�), for a speci�ed region 
i and an order m, only a narrow range
of wavelengths near the value satisfying the grating equation will contribute to the integral. If the range of

wavelengths for mth order photons falling into the ith bin has a width of ��
(m)
i , then the above integral may

be written

C
(m)

i

= (N�)

Z �
(m)
i

+��
(m)
i

=2

�
(m)
i

���
(m)
i

=2

d� G
(m)

i

(�)A(m)(�)s(�); (13)

where

�
(m)
i = (i+

1

2
)
��

m
(14)

denotes the wavelength of an mth order photon at the center of the ith bin. Now, if ��
(m)
i is small such that

s(�) does not vary much over the integration region, then it may be approximated by its average value in the

interval, written here as �s
(m)
i . This procedure yields the ux-corrected spectrum

�s
(m)
i =

C
(m)

i

(N�)
R
d� G

(m)

i

(�)A(m)(�)
: (15)

This equation may be put in a more familiar form by assuming that the e�ective area does not vary much over

the interval ��
(m)
i , then it too may be replaced by its average value over the region and removed from the

integral. Then using Eq. 8, it follows that

�s
(m)
i =

C
(m)

i

(N�)A
(m)
i f

(m)
i ��

; (16)

where A
(m)
i = A(m)(�

(m)
i ) and f

(m)
i = f (m)(�

(m)
i ;�w=2; w=2).

The linearity of equations (15) and (16) is a reection of the assumption that s(�) is small enough that
pile-up can be neglected. In the next section, a modi�cation to Eq. 16 will be presented that takes into account
the e�ects of pile-up.

Proc. of SPIE Vol. 4851     103

Downloaded from SPIE Digital Library on 07 Sep 2010 to 128.103.149.52. Terms of Use:  http://spiedl.org/terms



3. A DISPERSIVE PILE-UP MODEL

As mentioned above, pile-up is a consequence of the limited spatial and temporal resolution of the CCD.
Correcting for the e�ects of pile-up requires consideration of these limiting scales.

The time resolution of the CCD is governed by the integration time between successive CCD read-outs, i.e.,
the frame-time � . The speci�cation of the spatial resolution element is more diÆcult to characterize because,
in addition to the physical pixel size, it involves the detailed physics of how the charge-clouds created by the
photons overlap, as well as the details of the event-detection algorithm. Unfortunately, a charge cloud created by
an X-ray photon is not generally con�ned to the pixel where the charge-cloud originated. Hence, event-detection
involves the examination of the pixel of the candidate event as well as its neighboring pixels. For the Chandra
ACIS CCDs, the most commonly used event-detection scheme involves the examination of 3 by 3 pixel cells.
Such a region is called an event-detection cell. Its size speci�es the fundamental spatial scale for pile-up e�ects.

The energy resolution of the CCD for single photon events may be described by a response function3

R(h;E) that gives the probability for a photon of energy E interacting with the CCD to produce a pulse-height
h. Following Ref. 1, the two-photon response function R(h;E1; E2) will be assumed to approximately obey the
superposition condition

R(h;E1 + E2) =
X
h0<h

R(h0; E1)R(h� h0; E2): (17)

A similar equation exists for the n photon case. In simple terms, the above equation means that the response
of the detector to two piled photons will be the same as that produced by a single photon whose energy is the
combined energy of the two photons.

The superposition hypothesis has two important rami�cations. First of all, consider the pile-up of a �rst-
order di�racted photon of energy E with a photon from themth order. For a small enough bin-size ��, it follows
from the grating equation that the mth order photon will have an energy near mE. Hence, the superposition
hypothesis implies that the energy of the combined event will be approximately (m + 1)E. That is, the event
will look like one produced by di�racted photon from the (m+ 1)th order.

The second important implication of the superposition hypothesis concerns the order-sorting process. Recall
from the previous section that if the CCD has suÆcient spectral resolution, one may apply the appropriate
pulse-height �lter to extract mth order events. This means that when applied to extract �rst order events, the
�lter will exclude events that are a result of pile-up because the piled events will look like higher order events.
Plus and minus �rst orders are rather special in this regard. When a pulse-height �lter is applied to pick out
higher order events, e.g., second order, there is the possibility for the unwanted inclusion of events produced by
the pile-up of lower order photons.

As a result, the observed count-rate for the �rst order di�racted spectrum will be lower than expected in
the absence of pile-up. Hence, a pile-up model for the correction of the �rst order spectrum can be constructed
by simply computing the probability of getting a single, unpiled �rst order event. For if pile-up did occur, such
an event would not appear in the order-sorted �rst order spectrum.

There are two ways for pile-up to remove events from the �rst order di�racted spectrum. The �rst and most
important way is from pile-up of other �rst order photons. The second way is through the pile-up of higher
energy, higher order photons. The relative importance of these mechanisms may be ascertained by inspecting
the ratio of the expected count rate of higher-order events in detection cell, to that of �rst order events in the
same detection cell, in the absence of pileup. This ratio, expressed as

P
m>1(1=m)A(m)(�=m)s(�=m)

A(1)(�)s(�)
; (18)

is plotted in Fig. 1, assuming e�ective areas appropriate for the Chandra Medium Energy Grating (MEG) and
evaluated for a constant value of s(�), and a power-law with a spectral index of 2. This �gure shows that
higher-order pile-up is important only at large wavelengths, and only then when the ux at large wavelengths is
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Figure 1. Figure showing the ratio of Eq. 18 of the expected count rate of higher-order events in a pixel, to the
rate of �rst order events in the same pixel computed assuming no pileup. The solid curve shows the ratio evaluated
for a constant value of s(�) using e�ective areas appropriate for the Chandra MEG. The dashed curve was generated
assuming a power-law with a spectral index of 2. Although the ratio dominates at long wavelengths, �rst-order pile-up
is not expected to be important there except for extremely bright sources.

large enough to cause pile-up in that region of the spectrum. For most astrophysical X-ray sources, this is rarely
the case. For this reason, in what follows, only the channel involving the pile-up of �rst order photons will be
considered. For notational simplicity, the �rst order e�ective area A(1)(�) will be written simply as A(�).

It will be assumed that the di�racted spectrum is binned using a �� corresponding to the local wavelength
equivalent of a CCD pixel. The cross-dispersion extraction width is assumed to be large enough to include a
substantial fraction of the events, but not so large that background events become important. Furthermore,
each of the bins 
i is assumed to consist of a central region where the incident ux may be great enough for
pile-up to occur. Outside the pile-up region, the standard model described in the previous section will be used.
For simplicity in what follows, the central pile-up region will be taken to have a cross-dispersion width of 5
pixels. Hence, the problem becomes that of �nding the expected number of single-photon events that fall within
the central 5 pixel pile-up region, under the event-detection constraint that a second photon cannot fall into
the nearest neighboring pixels surrounding the �rst.

An important quantity governing the expected count rate is the amount of photon ux falling into each of
the pixels. Let !ij denote the jth pixel in the ith extraction bin. Following the discussion of section 2, the ux
Fij of event-producing �rst order photons intercepted by this region is given by

Fij =

Z
d� G(1)

!ij (�)A(�)s(�); (19)
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where

G(1)
!ij (�) =

Z (i+1)��

i��

d�

Z zj+1

zj

dz G(1)(�; z; �): (20)

Due to the sharp-peaked nature of G
(1)
!ij (�), only a narrow range of wavelengths �� centered upon �

(1)
i (cf. Eq.

14) will contribute to the integral over �. With the assumption that �� is small, Eq. 8 may be used to produce

Fij = fijAisi��; (21)

where

fij = f (1)(�
(1)
i ; zj ; zj+1) (22)

represents the cross-dispersion EEF for the jth pixel of the ith bin.

Assuming that the photon arrival times are Poisson-distributed, the probability for n photons to to interact
with a pixel (i; j) during a time � is given by

(�Fij )
n

n!
exp(��Fij): (23)

To calculate the expected �rst-order count rate, it is simply a matter of enumerating the various possibilities
for single photon events and then use Poisson statistics to assign a probability to each one. Fig. 2 shows the
various combinations of the one and two single-photon event patterns that are considered.

The �rst possibility illustrated in Fig. 2 is that of a single photon in the center of the extraction region. Note
that in accordance with the event detection scheme, no X-ray photon can interact with the 8 nearest neighboring
pixels during the CCD frame. In addition the pattern excludes photons from the 4 pixels that are immediately
adjacent to the neighboring pixels from the same row or column as the central pixel. The reason for this is as
follows: The event detection scheme permits so-called \overlapping events", where two events share a subset of
their respective nearest neighboring pixels. Some of liberated charge in the overlapping events may be counted
twice causing an increase in the pulse-height of each of the events over what the pulse-height would be in the
absence of the other event. In other words, overlapping events are another form of pile-up. Treating such events
properly would require what are known as energy-dependent grade branching ratios. In the absence of such
information, overlapping events will be treated in a purely ad-hoc manner by allowing diagonal overlapping
events but not allowing overlapping events in the same row or column. Hence, in addition to requiring that the
eight neighboring pixels be free of photon interactions, the pixels next to the nearest neighbors in the same row
or column as the central event will also be required to be free of photon interactions.

As the reader can show, the probability for the �rst pattern of Fig. 2 is given by

P
(a)
i (si) = �Aisi��fi0e

��Aisi��(2fi2+6fi1+5fi0); (24)

where for simplicity symmetry about j = 0 has been assumed such that fi;�j = fi;j . In addition, the ux in
the neighboring bins at i� 1 was taken to be the same as the ith bin, i.e., fi�1;j = fi;j . Similarly, one can show
that the probabilities associated with (b), (c), (d), and (e) of Fig. 2 are given by

P
(b)
i (si) =�Aisi��fi2e

��Aisi��(fi0+3fi1+5fi2+3fi3+fi4)

�
1� �Aisi��(fi1 + fi2)e

�3�Aisi��(fi1+fi2)

�
;

P
(c)
i (si) =�Aisi��fi1e

��Aisi��(3fi0+6fi1+3fi2+fi3)

�
1� �Aisi��fi2e

��Aisi��(2fi1+3fi2+3fi3)

�
;

P
(d)
i (si) =(�Aisi��fi2)

2e��Aisi��(fi0+6fi1+10fi2+6fi3);

(25)

and

P
(e)
i (si) = (�Aisi��)

2fi1fi2e
��Aisi��(3fi0+8fi1+8fi2+4fi3+fi4); (26)
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Figure 2. This �gure illustrates the various event combinations in the central 5 pixel region of the ith bin. Pixels
containing the solid circle involve the interaction of a single photon. Empty pixels represent those with no photon
interactions. Pixels containing the large \X" denote pixels where the number of photon interactions are not important
for the probability associated with the pattern. Pixels marked with a \{" contain no �rst order events, either because no
photons interacted with the pixel, or because a second photon interacted in the pixel or one of its nearest neighboring
pixel causing the event to be interpreted as one of higher order. The pixels marked with a small \x" are neighbors
of those marked with a \{", and must be taken into account when computing the probabilities associated with those
marked by a \{". Note that patterns obtained by the reections (b), (c), and (e) via the operation j �! �j are not
shown. See the text regarding the treatment of the next-nearest neighbors of an event, e.g., the i+2, j = 0 pixel of (a).
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Figure 3. This �gure shows plots of the encircled energy fractions used in the analysis. The left plot shows the encircled
energy fractions for the MEG �rst order dispersion arm, and the plot at the right shows the fractions for the HEG arm.

respectively. In terms of these probabilities, the expected number of �rst-order events per frame in the ith bin
is given by

Ci

N
= [1� fi0 � 2(fi1 + fi2)]�Aisi�� + P

(a)
i (si) + 2[P

(b)
i (si) + P

(c)
i (si)] + 2[P

(d)
i (si) + 2P

(e)
i (si)]; (27)

where the �rst term represents the contribution from events falling outside the 5 pixel central pile-up region.

Equation 27 is the main result of this work. It relates the expected number of �rst-order events per frame
in a wavelength bin to the incident source ux. Flux-correction within this model is achieved by solving the
above equation for si given the observed �rst order spectrum Ci. This model has been implemented in the ISIS4

spectral modeling program, which was used for the analysis of 4U 1636-53.

4. APPLICATION TO 4U 1636-53

The bright X-ray binary 4U 1636-53 was observed September 20, 1999 by the Chandra X-ray Observatory using
the High Energy Transmission Grating (HETG) in conjunction with the ACIS-S CCD detector. The total
duration for the observation was 32270 seconds using a 3.2 second frame-time.

Data were processed using standard CIAO 2.2 tools supplemented by custom software. Level 1 �les were
used with standard grade �ltering applied. However, events that were agged as so-called cosmic ray afterglow
events were kept because of their misidenti�cation for even moderately bright sources. Data were extracted for
the MEG�1, MEG�3, and HEG�1 orders.

The ISIS spectral analysis program was used to analyze the data using the pile-up model presented in the
previous section. The data used for the encircled energy fractions fij were extracted from the Chandra LSF
data products, which were derived from MARX simulations. Plots of the encircled energy fractions are shown
in Fig. 3.

Fig. 4 shows a plot of the MEG+1 and HEG+1 spectra corrected using the standard technique of section 2.
Also shown on this plot as the solid curve is the MEG plus third order spectrum, which is believed to be free of
pile-up for wavelengths greater than 4 angstroms. Most of the MEG third order data below 3�A are a result of 3
photon pile-up from MEG �rst order. Note that the HEG+1 ux-corrected spectrum appears to be consistent
with the MEG third order spectrum beyond 6�A. However, the MEG �rst order spectrum does not agree with
either of the other spectra over much of the wavelength range.
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Figure 4. Figure showing the results of ux-correcting the 4U 1636-53 data using the standard ux correction technique
based upon equation Eq. 16. As can be plainly seen, the standard approach fails to correct the MEG �rst order over
much of the displayed wavelength band.

Flux-correction using the pile-up model of section 3 produces spectra that are in much better mutual
agreement as shown in Fig. 5. As the �gure shows, the MEG+1 and MEG+3 spectra agree quite well above
about 5:5�A. Note that the pile-up correction has also increased the HEG �rst order spectrum so that it is
systematically larger that the other two spectra above 6�A. It is easy to see that such an increase should be
expected from a simple statistical argument. About 8 percent of the CCD frames contained an event in an event
detection cell centered upon 8�A in the HEG+1 dispersion arm. This rate represents the fraction of observed
single photon events, and does not include events due to multiple photons. From the application of Poisson
statistics, it follows that the actual rate should be 8.7 percent in the absence of pile-up{ a value that is about
9 percent larger.

There are several possible reasons for the di�erences between the di�erent ux-corrected spectra. The most
obvious one is the possibility of systematic errors in the calibration data, e.g., the e�ective areas. Also, simply
increasing the encircled energy value fi1 by 5 percent can explain much of the di�erence between the MEG and
HEG spectra. Other sources of error include the order-sorting tables used to extract �rst order events. These
tables are made from the CCD redistribution matrices, which are known to be problematic above 7�A. In light
of these considerations, the pile-up correction appears to be working well.

5. SUMMARY

In this paper a method of ux-correction applicable to grating data a�ected by pile-up was given. The e�ec-
tiveness of the model was demonstrated by its application to the Chandra HETGS observation of 4U 1636-53.

The grating pile-up model as given in Eq. 27 has been implemented in the ISIS spectral modeling program.
As such, one is not limited to simple ux-correction as was done for 4U 1636-53. One can also use ISIS to �t a
spectral model to grating data a�ected by pile-up.
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Figure 5. Figure showing the results of ux-correcting the 4U 1636-53 data using the pile-up model of Eq. 27. The
ux-corrected HEG �rst order spectrum is systematically larger than the other two spectra. It is believed that this
discrepancy is due to uncertainty in one or more of the calibration parameters.

More work still remains to be done. For example, preliminary tests with extremely bright sources such as
Cygnus X-1 indicate that while the model works well on some parts of the spectrum, it needs to be improved in
certain wavelength ranges where the amount of pile-up is severe. For such sources, pile-up is probably occurring
outside the central 5 pixel region assumed in this work. Work is currently in progress to extend the model to
an arbitrarily wide region. Nevertheless, it is hoped that the model described here will be suÆciently useful for
a wide range of sources.
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