
Sherpa: a mission-independent data analysis appliationPeter E. Freeman, Stephen Doe, Aneta SiemiginowskaHarvard-Smithsonian Center for AstrophysisABSTRACTThe ever-inreasing quality and omplexity of astronomial data undersores the need for new and powerful dataanalysis appliations. This need has led to the development of Sherpa, a modeling and �tting program in the CIAOsoftware pakage that enables the analysis of multi-dimensional, multi-wavelength data. In this paper, we present anoverview of Sherpa's features, whih inlude: support for a wide variety of input and output data formats, inludingthe new Model Desriptor List (MDL) format; a model language whih permits the onstrution of arbitrarilyomplex model expressions, inluding ones representing instrument harateristis; a wide variety of �t statistis andmethods of optimization, model omparison, and parameter estimation; multi-dimensional visualization, provided byChIPS; and new interative analysis apabilities provided by embedding the S{Lang interpreted sripting language.We onlude by showing example Sherpa analysis sessions.Keywords: Chandra, CIAO, data analysis, �tting, modeling, Virtual Observatory1. INTRODUCTIONIn astronomial data analysis, one develops models of physial proesses in the spetral, spatial, and/or temporaldomains, then �ts these models to observed data. These data may be of arbitrary dimension, and/or they mayhave been olleted using an arbitrary number of telesopes that observe in di�erent wavelength bands. Sherpa, themodeling and �tting appliation of the Chandra Interative Analysis of Observations (CIAO) software pakage,1 isdesigned to takle suh omplex multi-dimensional, multi-wavelength analyses. Free of hard-wired instrument details,Sherpa is out�tted with a wide variety of models, �t statistis, and methods of optimization, model omparison, andparameter estimation, and it o�ers powerful embedded visualization, sripting, and data manipulation apabilities.It an thus be used to analyze energy- or wavelength-spae data from, e.g., ground-based telesopes, ISO, Hubble,XMM, and the Chandra X-ray Observatory, as well as from next-generation projets suh as the Virtual Observatory.In this paper we present a basi overview of Sherpa. In x2, we desribe the appliation itself, while in x3 wedesribe Sherpa's apabilities using a typial Sherpa session as a framework, from reading in data to determining the1� errors on the best-�t model parameters. In x4 we provide brief examples of how one may use Sherpa. For moreinformation, the reader may onsult the on-line Sherpa manual.22. IMPLEMENTATION OF SHERPAThe authors have developed Sherpa using the objet-oriented C++ programming language.3 In objet-orientedprogramming, objets enapsulate related data and funtions; thus, lasses (from whih objets are instantiated) anbe written that more losely model the problem domain. For a modeling and �tting appliation, lasses ontaining�tting methods, statistis, models, and data organize the ode in a way that more intuitively mirrors the oneptsunderlying the �tting proess.Sherpa is an interative appliation, using a lex/ya-based parser to interpret ommands. Sherpa aepts inputvia the ommand-line interfae or ASCII sript �les.�Send orrespondene to: (pfreeman,sdoe,asiemiginowska)�head-fa.harvard.edu; phone 1 617 496-7824; fax 1 617 495-7356; Harvard-Smithsonian Center for Astrophysis, MS 81, 60 Garden St., Cambridge, MA, 02138. Copyright 2001 Soietyof Photo-Optial Instrumentation Engineers.This paper was published in Astronomial Data Analysis, Jean-Lu Stark, Fionn D. Murtagh, Editors, Proeedings of SPIEVol. 4477, p. 76, and is made available as an eletroni preprint with permission of SPIE. One print or eletroni opy maybe made for personal use only. Systemati or multiple reprodution, distribution to multiple loations via eletroni or othermeans, dupliation of any material in this paper for a fee or for ommerial purposes, or modi�ation of the ontent of thepaper are prohibited.�Appliation developers may also use Sherpa's \wrapper" lass, whih provides an API for both C and C++ ode.



The CIAO pakage also ontains a number of other programs and libraries that enhane Sherpa's apabilities.Data I/O is provided by the CIAO Data Model library.4 The Data Model gives a higher-level, abstrat view ofastronomial data �les and provides transparent aess to the most ommon astronomial �le formats (FITS, IRAFIMH, IRAF QPOE).y The Data Model provides a uniform interfae so that the appliation need no longer use I/Ofuntions spei� to partiular �le formats. The Data Model also has a sophistiated �ltering and binning syntaxthat allows the extration of seleted portions of data ontained in a �le.For all visualization needs, Sherpa uses ChIPS, the Chandra Imaging and Plotting System.5 As the name indiates,ChIPS provides an interfae to plotting and imaging appliations (urrently SM,6 SAODS9,7 and SAOTNG 7). ChIPSis both a stand-alone, interative appliation and a C++ library (whih is how it is used by Sherpa{it passes ommandsand data to ChIPS). Sherpa an aess ChIPS funtions through the ChIPS API, but it is also possible for ChIPSommands to be input diretly at the Sherpa ommand-line.As of CIAO 2.1, the S{Lang interpreted sripting language8 has been embedded in CIAO. Its features inlude:� global and loal interpreted variables, and multidimensional arrays (up to seven dimensions);� branhing and looping, and programmability with user-de�ned funtions;� string and numeri data types, strutures, and a limited form of pointers;� built-in arithmeti and mathematial funtions, whih operate transparently on arrays; and� extensibility{the ability to reate new funtionality for CIAO appliations (e.g. GUIDE; see x4.3).S{Lang is aessed through a supplementary library layer, dubbed Variables, Math, and Maros (VARMM),9 whihgives the user additional apability to de�ne strutured variables diretly from disk �les, as well as enabling existingCIAO appliations to aess S{Lang variables and other features with a bare minimum of new development e�ort.3. SHERPA FUNCTIONALITYThe apabilities of Sherpa an be best desribed by following the steps of a typial analysis session. In suh a session,the user would:� read in (soure and/or bakground) data (and set �lters, et.);� build models that desribe these data (as well as the telesope/detetor ombination);� hoose a statisti that quanti�es how well these models desribe the data;� �t the models to the data, determining the minimum value of the hosen statisti;� ompare best-�t results ahieved with di�erent models to selet one best-�t model; and� estimate the errors for eah parameter of the best-�t model.Below, we disuss eah of these items in turn. We note that a typial session would also inlude ChIPS visualization(of the soure data, or of the bakground �t, et.); while we do not disuss it spei�ally in this setion, we provideexamples of visualization in x4.3.1. Sherpa Data Input (and Output)Data input marks the beginning of a Sherpa analysis session. The data may be input from either a �le on disk or aninterpreted S{Lang variable. In Table 1, we list data types that may be input into Sherpa, while in Table 2 we listurrently supported �le formats. (Instrument harateristis, suh as the point-spread funtion, or PSF, may alsobe ontained in �les that are read in when an instrument model is spei�ed; see x3.2.1.)One only needs to read in soure data to start an analysis session; other data types (suh as bakground) are notrequired. However, some types of data may be input automatially when soure data are read; for instane, a PHA�le an have olumns that speify the statistial and systemati errors (STAT ERR and SYS ERR, respetively) and thedata grouping (GROUPING), and it an have a keyword (BACKFILE) speifying the bakground dataset. Also, one anspeify statistial and systemati errors, �lters, and statistial weights via the ommand-line interfae. If statistialerrors are not input or spei�ed, they are estimated by Sherpa during �tting; see x3.3.An arbitrary number of datasets may be input into Sherpa, and arbitrary subsets of these data may be jointlyanalyzed. Sine urrent standard proessing of Chandra grating data inludes the extration of bakground spetrayASCII I/O is not provided by the Data Model but is provided elsewhere in CIAO library ode.



Table 1. Input data types.DATA Soure dataBACK Bakground data(B)ERRORS Soure or bakground errors(B)ERRORS SYSTEM Soure or bakground systemati errorsFILTER Spei�ation of whih bins of a given dataset are to be analyzedWEIGHT Statistial weights for eah datumGROUPS Spei�ation of how data are to be binnedTable 2. Supported �le types.ASCII ASCII dataFITSBIN FITS binary tableFITS FITS imageIMH IRAF IMH imagePHA Type I & II PHA dataQP IRAF QPOE imagefrom regions on either side of the soure extration region, one may also speify up to two bakground datasets persoure dataset. These data may be �t simultaneously with the soure data (see x4.2), or they may be subtratedfrom the soure data on a hannel-by-hannel basis prior to a �t:S0i = Si � �StS " PNj=1 Bi;jPNj=1 �Bj tBj # : (1)Si is the soure datum in bin i, Bi;j is the bakground datum in bin i of bakground set j, t is the observation time,and � is the \baksale" (the BACKSCAL header keyword value in a PHA �le), typially de�ned as the ratio of dataextration area to total detetor area.At any time during an analysis session, quantities like the bakground-subtrated data, onvolved model ampli-tudes, or �t residuals may be output to �les using the WRITE ommand. (The �les may be saved in any of the formatslisted in Table 2.) A user may also save (and later restore) the state of a Sherpa analysis session using a ModelDesriptor List (MDL). The MDL is a reord of all information relevant to a Sherpa �tting session: the names of allinput data �les and assoiated �lters; all de�ned soure and instrument models, with model parameter settings; thehoies of optimization method and �t statisti; and the uxes and identi�ation of emission/absorption lines thatthe user may have identi�ed (see x4.3). The MDL may be either saved to disk or instantiated as an S{Lang variable.3.2. Building Model ExpressionsOne soure and/or bakground data are input, the next step is to reate model expressions reeting one's knowledgeof the physial proesses whih gave rise to those data. (The user an also build model expressions that represent theobserving instruments. See x3.2.1.) Sherpa urrently provides nearly 40 of its own one- and two-dimensional modelsand 90 one-dimensional XSPEC 10 models that may be arbitrarily ombined to build omplex omposite models, aswe show below. Note that a user an also de�ne a modelz and ompile it into the libasfitUser.so shared-objetlibrary,x where it an be aessed by Sherpa.zThe usermodel. One an also de�ne an optimization method (usermethod) and statisti (userstatisti).xIn CIAO 2.2, Sherpa will also support user-model de�nition via S{Lang sripts.



Sherpa model language. The Sherpa model language resolves ambiguity by allowing the user to give a uniquename or alias to eah instane of a model. For example, if two datasets are entered, and eah is to be �t with aGaussian model, but with di�erent parameters, one might type:{sherpa> gauss1d[g1℄sherpa> gauss1d[g2℄sherpa> soure 1 = g1sherpa> soure 2 = g2whereas if eah is to be �t with the same Gaussian model, one might type:sherpa> gauss1d[g1℄sherpa> soure 1:2 = g1Linking parameters to other parameters or to models. One an link an individual model parameter toanother model parameter, so that their values are orrelated. For instane, if a partiular atomi line is observed bytwo di�erent detetors, it ould be modeled with two Gaussian funtions whose entroids are linked:sherpa> soure 1 = gauss1d[g1℄sherpa> soure 2 = gauss1d[g2℄sherpa> g1.pos => g2.pos(Note that simple arithmeti relations are also possible, e.g. g1.ampl => 2*g2.ampl.) At this point, g1.pos is nolonger a free parameter of the �t. It an be made free again with the ommand UNLINK g1.pos.One an also link an individual model parameter to a model, to desribe how a parameter's value will vary asa funtion of position in parameter spae. For instane, one an model emission from an aretion disk using ablakbody funtion whose temperature is a funtion of radius:sherpa> soure = bbsherpa> Temperature = POLYsherpa> bb.kT => TemperatureNesting model expressions. A model may be nested within another, i.e. one may speify a model expression ofthe form g(f(x)). In this example, the input data axis is transformed to log-spae using Sherpa's log model, and ablakbody model is evaluated in that spae:sherpa> logenergy = shlogsherpa> soure = bb{logenergy}Multi-dimensional model expressions. One an speify ompletely di�erent models that are to be evaluatedalong di�erent axes of a multi-dimensional dataset, as in this example, where two-dimensional spetral-radius dataare modeled with a ombination of Lorentzian and power-law models:sherpa> lorentz[Spatial℄sherpa> pow[Spe℄sherpa> soure = Spatial{x1}*Spe{x2}x1 and x2 represent the �rst and seond axes of the input image, respetively.{The relationship between gauss1d, and g1 and g2 above is similar to the lass-objet relationship in objet-orientedprogramming: gauss1d is the lass, speifying a Gaussian funtion with parameters position, amplitude, and full-width athalf-maximum, while g1 and g2 are instantiated objets of the lass, eah ontaining a spei� set of parameter values.



3.2.1. Instrument modelsInstrument models are used to quantify harateristis, suh as e�etive area, a detetor's energy response, or amirror's point-spread funtion. They provide a mapping from photon spae (where soure and bakground modelsare evaluated) to ounts spae (where �t statistis are omputed). The instrument model lass is the key elementwhih makes Sherpa a mission-independent appliation, permitting analysis of data observed by any telesope,regardless of whether it is ground-based or spae-based.Currently, Sherpa de�nes three instrument model lasses: (1) RSP, in whih an evaluated one-dimensional modelis multiplied by an anillary response (ARF, i.e. an e�etive area) on a bin-by-bin basis, then folded through aresponse matrix (RMF); (2) PSFFromFile, in whih the evaluated one- or two-dimensional model is onvolved witha numeri kernel; and (3) PSFFromTCD, in whih the evaluated one- or two-dimensional model is onvolved withan analyti kernel (e.g. Gaussian) de�ned within CIAO's Transformation, Convolution, and Deonvolution (TCD)library. Future versions of Sherpa may inlude new lasses to treat, e.g., two-dimensional exposure maps.3.3. Statistis3.3.1. Statistis based on the �2 distributionThe �2 statisti is appropriate for the analysis of Gaussian-distributed data. It is de�ned as�2 � Xi (Di �Mi)2�2i :where Di is the (soure or bakground) data in bin i, Mi is the (onvolved soure or bakground) model preditedamplitude in bin i, and �i is the estimated error for the ith datum (the square root of the variane of the distributionfrom whih that datum had been sampled). As noted in x3.1, one may speify the errors via a �le or the ommand-line;if this is done, the �2 statisti is used as shown above. Otherwise, the data are assumed to be Poisson-distributed,kwith the errors for eah datum estimated during analysis. The large array of error estimators that Sherpa providesis one of its key features; these are listed in Table 3. Note that the entries in this table are only orret if thebakground data have not been subtrated from the soure data; otherwise errors are propagated in the standardmanner (�2S0 = �2S + �2B). Also note that error estimates based on model amplitudes are inappropriate to use in theanalysis of bakground-subtrated data, as they generally underestimate the true error.Using a �2-based statisti to analyze ounts data is generally only valid in the Gaussian (high-ounts) limit (>� 5ounts in eah bin). This is beause the approximations that must be made to derive the �2 statisti from Poissonlog-likelihood logL break down otherwise. The CHI GEHRELS11 and CHI PRIMINI12 statistis are designed to workwith low-ount data; note that the former it is not generally sampled from the �2 distribution and thus the derivedbest-�t statisti may appear to be \too good" (�2G=N � 1, where N is the number of degrees of freedom in the �t),in the low-ounts limit.3.3.2. Statistis based on the Poisson likelihoodThe Poisson likelihood funtion is L = Yi MDiiDi! exp(�Mi) : (2)Sherpa features two statistis based on this funtion: CASH and BAYES.The version of the CASH statisti13 used by Sherpa is derived from L by (1) taking its logarithm, (2) dropping thefatorial term (whih remains onstant during �ts to given datasets), (3) multiplying by two, and (4) hanging thesign (so that the statisti may be minimized, like �2):C � 2Xi [Mi �Di logMi℄ ; (3)In the high-ounts limit, �C � ��2, so that in priniple one an use �C instead of ��2 in model omparison tests(see x3.5).kThe Poisson distribution tends asymptotially towards a Gaussian distribution as its expetation value approahes in�nity.



Table 3. Statistis based on the �2 distribution.Statisti Variane �2iCHI DVAR DiCHI GEHRELS (Sherpa default) �1 +pDi + 0:75�2CHI MVAR MiCHI PARENT (PNi=1Di)=NCHI PRIMINI Mi from previous best-�tThe BAYES statisti14 is based on Bayesian statistial methodology�� and is appropriate to use when a bakgroundis input and the rate of bakground aumulation may be taken as the same in both the bakground and soureextration regions. This statisti takes into aount unertainty in the (impliitly de�ned) bakground amplitudesvia marginalization: B � � p(~xS jD) = �Xi ZxB;i dxB;ip(~xS ; xB;ijD) ;where ~xS represents the set of soure model parameters and xB;i is the bakground amplitude in the ith bin. (Notethat the above equation has an analyti solution that we do not reprodue here.)Note that beause the CASH and BAYES statistis are based on the likelihood funtion, they should not be appliedto bakground-subtrated data. Also, there is no \goodness-of-�t" measure assoiated with CASH and BAYES, as thereis of �2-based statistis. Suh a measure an, in priniple, be omputed by performing Monte Carlo simulations: onewould repeatedly sample new datasets from the best-�t model, �t them, and note where the observed statisti lieswithin the derived distribution of statistis.3.4. OptimizationOptimization is the at of minimizing �2 or �logL by varying the thawed parameters of the de�ned model. Sherpaprovides a number of optimization methods, whih an be lassi�ed in two broad ategories: those whih �nd a loalminimum of the statistial surfae in parameter spae by moving along the loal gradient of that surfae, and thosewhih examine large (hyper-)volumes of parameter spae in a searh for the global minimum (see Table 4yy).Below, we disuss the three optimization methods appropriate for �nding loal minima: POWELL, SIMPLEX, andLEVENBERG-MARQUARDT. Users should be aquainted with the (dis)advantages of eah so as to make the best use ofthem. (For more information about Sherpa's other optimization methods, onsult the Sherpa manual2 and, e.g.,Press et al. 1992.16 )POWELL, a diretion-set method in whih the hosen statisti is minimized by varying eah member of an (initiallyorthogonal) set of parameter-spae vetors in turn, is Sherpa's default optimizer. Its advantages inlude the fat thatno gradient alulations are required, and that it is a robust method, apable of �nding minima even on omplexstatistial surfaes. (Also, unlike LEVENBERG-MARQUARDT, is an be used e�etively with likelihood-based statistis.)Its primary disadvantage is that it is relatively slow.In SIMPLEX optimization, the �t statisti is alulated at the N + 1 verties of a simplex in a N -dimensionalparameter spae, with the verties being moved until the loal minimum is braketed. Its advantages inlude the fatthat no gradient alulations are required, it an �nd minima of omplex statistial surfaes, and it requires fewermodel evaluations than POWELL. However, it is not as robust as POWELL. The SIMPLEX method is best-used when onestarts the optimization lose to the loal minimum; for instane, it is a good optimizer to use in parameter estimation(see x3.6).��Spae does not permit us to provide details about Bayesian statistial methodology, whih may be less familiar to somereaders than the standard \frequentist" statistial paradigm. For an introdution to Bayesian statistis that is geared towardsastrophysiists, see Loredo (1992).14yyAlong with these Sherpa methods, a future release of CIAO will feature a stand-alone �tting appliation for low-ountsdata whih uses Bayesian posterior sampling. See van Dyk et al. (2001).15



Table 4. Optimization methods in Sherpa.Loal Minimum POWELL, SIMPLEX, LEVENBERG-MARQUARDTGlobal Minimum GRID(-POWELL), MONTE(-POWELL), SIMULATED ANNEALINGIn LEVENBERG-MARQUARDT optimization, the loal minimum is approahed by taking steps in parameter spaewhose magnitudes Æ~x are omputed by solving the set of linear equationsnXj=1 �ij(1 + �ij)Æxj = �i ;where �ij = nXk=1 1�2k ��M(~x)�xi �M(~x)�xj � and �i = � 12 ��2�xi ;and �ij is a matrix with non-zero diagonal elements whose magnitudes are inversely proportional to Æ~x. The primaryadvantage of LEVENBERG-MARQUARDT optimization is speed, while its disadvantages inlude the fat that a gradientomputation is required, that it is appropriate for use with �2-based statistis only, and that it is less robust whenapplied to optimization on a omplex statistial surfae. (To irumvent the third issue, we have introdued theoption that the optimization method may be swithed from LEVENBERG-MARQUARDT to SIMPLEX lose to the minimum,where the disadvantages of LEVENBERG-MARQUARDT beome more readily apparent.)3.5. Model ComparisonOften, a user will �t more than one parametrizedmodel to a given dataset, and will wish to ompare the best-�t resultsof eah. For instane, one may �t two ontinuum models to data, and need to deide whether the improvement inthe �t statisti that is observed when using the more omplex model is attributable to hane. To make this deision,one uses a model omparison test to yield either: (1) the frequentist test signi�ane, �, whih is the probabilityof seleting the alternative (more omplex) model M1 when in fat the null hypothesis M0 is orret; or (2) theBayesian odds, the ratio of model posterior probabilities for M1 and M0. If the prior probability distribution for amodel's parameter values is onstant, then its posterior probability is proportional to the integral of the likelihoodfuntion L over parameter spae.The model omparison test that is urrently available to the Sherpa user is the �2 Goodness-of-Fit (GOF) test,an alternative-free test. The next version of Sherpa will also ontain the Maximum Likelihood Ratio (MLR) testand the F -test. Methods of model omparison that may be inluded in future versions of Sherpa inlude: usingsimulations to determine model omparison test statistis numerially when the onditions for using an analyti testare not ful�lled; omputing the Bayesian odds using the Laplae approximation17; and omputing the Bayesian oddsvia numerial integration. We note that these new tehniques, in addition to assisting the omparison of models,would also be useful for parameter estimation.3.6. Parameter EstimationOne one has seleted a best-�t model, the next question is: what are the errors on the model parameters, i.e. what arethe on�dene intervals assoiated with eah model parameter? In general, a frequentist statistiian an determinepossible intervals by repeatedly simulating data from the best-�t model, �tting these data, and determining thedistribution of best-�t values for eah model parameter.zz The entral 68% of eah distribution an then be deemedthe 1� on�dene interval. However, simulations are omputationally expensive, and if: (1) the �2 or logL surfae isapproximately shaped like a multi-dimensional paraboloid (i.e. ontours of onstant �2 or logL appear ellipsoidal intwo-dimensional plots), and (2) the best-�t point is suÆiently far from parameter spae boundaries, then on�deneintervals may be estimated by examining the statistial surfae itself.zzA Bayesian would adapt methods mentioned in the previous setion{using numerial integration or the Laplae approx-imation, et.{to the problem of parameter estimation. Thus in the remainder of this subsetion, we only disuss frequentistparameter estimation methods.



Figure 1. Best-�t of two polynomial funtions to data of the narrow-line Seyfert 1 galaxy RE J1034+396, observedby the William Hershel 4.2m Telesope, HST, and BeppoSAX.Sherpa urrently features three parameter estimation methods appropriate for use when the statistial surfae is\well-behaved": UNCERTAINTY, PROJECTION, and COVARIANCE. (In addition, one an make one- or two-dimensionalplots showing the �t statisti value as a funtion of parameter value[s℄.) With UNCERTAINTY, the error for a partiularthawed parameter is estimated by varying its value (while holding all other parameter values �xed to their best-�tvalues) until the �t statisti inreases by a preset amount from its minimum value (e.g. ��2 = 1 for 1�). PROJECTIONis similar to UNCERTAINTY, exept that the values of all other parameters are allowed to oat to new best-�t values.With COVARIANCE, errors are estimated by alulating the ovariane matrix, the inverse of the matrix of statistialsurfae seond derivatives at the best-�t point. Eah of these methods has distint (dis)advantages: for example,UNCERTAINTY, while fast, will generally underestimate an interval's size if the parameter is orrelated with otherparameters; and PROJECTION provides a means to visualize the surfae and an be used even if the model parametersare orrelated, but is in the stritest statistial sense no more aurate than the muh faster COVARIANCE method(whih is itself not useful for visualization).4. EXAMPLES OF SHERPA ANALYSESIn this setion, we present four examples of Sherpa analyses. We note that spae limitations prevent us from showingall but a few ommands that are used in these analyses; for full sripts, plus sripts showing other analyses, pleaseonsult the Sherpa analysis threads.184.1. Multi-wavelength analysis of spetraIn this example, we analyze ux data (log[�F� ℄) of RE J1034+396,19 a low-redshift, narrow-line Seyfert 1 galaxy.The data were olleted by the William Hershel 4.2m Telesope, HST, and BeppoSAX. Beause the data are notsampled from a Poisson distribution, the errors must be input or spei�ed; here, we assume that the error on theux is 1%:sherpa> errors = 0.01*dataThe observed \blue bump" is modeled in Sherpa with two polynomial funtions; the �nal �t is shown in Figure 1.



Figure 2. Top: Best-�t of a power-law times galati absorption model to the soure spetrum of supernova remnantG21.5{0.9. Bottom: Best-�t of a di�erent power-law times galati absorption model �t to a bakground spetrumextrated near G21.5{0.9.4.2. Simultaneous analysis of soure and bakground dataIn this example, we analyze Chandra soure and bakground spetra of the supernova remnant G21.5{0.9. In ouranalysis, we assume a power-law times galati absorption model, with di�erent model parameters for the soure andbakground:sherpa> soure = xswabs[sabs℄*pow[sp℄ # uses the XSPEC wabs absorption modelsherpa> bg = xswabs[babs℄*pow[bp℄We model the soure and bakground data separately, rather than subtrat the bakground data from the souredata, beause the low bakground ount-rate. This low ount-rate also motivates the use of the Cash statisti:sherpa> statisti ashThe �nal �t is shown below, and in Figure 2.sherpa> fitpowll: v1.2powll: onverged to minimum = -7.01375E+03 at iteration = 28powll: final funtion value = -7.01375E+03sabs.nH 2.38646 10^22/m^2sp.gamma 1.50622sp.ampl 0.00201939babs.nH 0.629181 10^22/m^2bp.gamma 1.0345bp.ampl 0.000101356



4.3. Analysis of Chandra grating dataThis example shows the analysis of Chandra grating spetra of the bright X-ray soure Capella, whih have beenstored in one Type II PHA �le. We onentrate on the �rst-order High Energy Grating (HEG) and Medium EnergyGrating (MEG) spetra, whih are input into Sherpa as datasets 3 (HEG -1), 4 (HEG +1), 9 (MEG -1), and 10(MEG +1). Beause the input Type II PHA data �le ontains olumns de�ning the wavelengths for eah bin, theanalysis is assumed to be in wavelength-spae. We examine only data between 6.7 and 6.8 �A:sherpa> notie allsets wave 6.7:6.8We then �t a normalized Gaussian funtion to the observed line:sherpa> soure 3,4 = ngauss[hg1℄ + onst[o℄sherpa> soure 9,10 = ngauss[mg1℄ + owhere the onstant funtion represents the bakground. Beause the line ux will be same in a ontemporaneousMEG/HEG observation, the amplitudes are linked:sherpa> mg1.ampl => hg1.amplOther parameters are not linked beause of unertainties in alibration. Note that we use only grating ARFs inthis analysis; we ould also model the line pro�le with a delta funtion and use both grating ARFs and RMFs.After the �t (Figure 3), we identify the most likely transition whih gives rise to the observed line using GUIDE, aS{Lang-based extension to Sherpa whih ats as an interfae to the Atomi Plasma Emission Database (APED):20sherpa> import("guide")sherpa> identify(6.40)Found 9 lines.Lambda -- Ion UpperLev LowerLev Emis(ph m^3/s) � Peak Temp...6.7403 -- Si XIII 2 -> 1, 3.548e-17 � logT = 7.00...4.4. Analysis of two-dimensional dataIn this last example, we demonstrate how one an model the spatial distribution of hot gas in the X-ray luster MS2137.3-2353, observed by Chandra. After the data are entered, we display them using SAODS9 ; we then load thethree point soure regions into SAODS9 that we will use to interatively �lter the data:sherpa> ignore imageOne ould also use the regions to �lter the data diretly at the Sherpa ommand line:sherpa> ignore filter ellipse(300.14946,299.8716,20.128119,16.76774,94.648547) + \ellipse(431.96938,371.1944, 7.251325, 4.77655,11.890284) + \ellipse(212.26666,145.8972, 4.744431, 4.33702,71.631001)This ommand �lters out the data within the de�ned regions. The remaining data, whih represent only the intra-luster gas, are then �t with a two-dimensional beta model pro�le. See Figure 4.ACKNOWLEDGMENTSWe would like to thank Mark Birkinshaw, William Joye, Malin Ljungberg, and Mihael Noble for past and presentontributions to Sherpa's development. We would also like to thank Holly Jessop for her tireless work maintaining theSherpa manuals and threads. The Sherpa projet is supported by the Chandra X-ray Center under NASA ontratNAS8-39073.
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Figure 3. Best-�t of a normalized Gaussian funtion to an emission line (Si XIII 2!1 at 6.7403 �A) observed in four�rst-order HEG and MEG Chandra grating spetra of Capella.

Figure 4. Top Left: Chandra ACIS-S data of X-ray luster MS 2137.3-2353, with SAODS9 soure regions superim-posed. Top Right: Best-�t of a two-dimensional beta model to the �ltered data. Bottom Left: Residuals (in units of�) of the best �t. Bottom Right: The applied �lter; the data within the ovals were exluded from the �t.
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