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A new method to model X-ray s
attering fromrandom rough surfa
esPing Zhao and Leon P. Van Speybroe
kHarvard-Smithsonian Center for Astrophysi
s60 Garden Street, Cambridge, MA 02138 U.S.A.ABSTRACTThis paper presents a method for modeling the X-ray s
attering from random rough surfa
es. An a
tual roughsurfa
e is (in
ompletely) des
ribed by its Power Spe
tral Density (PSD). For a given PSD, model surfa
es withthe same roughness as the a
tual surfa
e are 
onstru
ted by preserving the PSD amplitudes and assigning arandom phase to ea
h spe
tral 
omponent. Rays representing the in
ident wave are re
e
ted from the modelsurfa
e and proje
ted onto a 
at plane, whi
h approximates the model surfa
e, as outgoing rays and 
orre
tedfor phase delays. The proje
ted outgoing rays are then 
orre
ted for wave densities and redistributed ontoan uniform grid where the model surfa
e is 
onstru
ted. The s
attering is then 
al
ulated by taking the FastFourier Transform (FFT) of the resulting distribution. This method is generally appli
able and is not limitedto small s
attering angles. It provides the 
orre
t asymmetri
al s
attering pro�le for grazing in
ident radiation.We apply this method to the mirrors of the Chandra X-ray Observatory and show the results. We also expe
tthis method to be useful for other X-ray teles
ope missions.Keywords: X-ray s
attering, random rough surfa
e, X-ray mirror, X-ray teles
ope, Chandra X-ray Observatory1. INTRODUCTIONThe study of s
attering from random rough surfa
es goes ba
k at least to Rayleigh in 1887,1 and has beeninvestigated by many physi
ists and engineers. The problem has been the subje
t of numerous books, in
ludingthe 
lassi
 \The S
attering of Ele
tromagneti
 Waves From Rough Surfa
es" by Be
kmann and Spizzi
hino2and 
ountless resear
h papers.3 Many people have also studied X-ray s
attering at grazing angles as part of thissubje
t. This problem is even more diÆ
ult be
ause of the short wavelength (
ompared to the s
ale of the surfa
eroughness) and the small angle between the wave propagation dire
tion and the surfa
e. Most approa
hes inthe literature make the approximation that the s
attering angle is mu
h smaller than the in
ident grazing angle.Some of the treatments use the approximation that the surfa
es are suÆ
iently \smooth" so that a low orderexpansion in the surfa
e height errors is adequate, and 
onsequently are limited in their appli
ations. Many ofthe approa
hes 
an not obtain the s
attering asymmetry around the dire
tion of spe
ular re
e
tion (s
atteringtowards vs. away from the surfa
e). These approximations are not adequate for many of the appli
ationsinvolving X-ray mirrors.This new study of the 
entury old problem is motivated by our dire
t involvement of the evaluation ofthe X-ray mirror performan
e aboard the Chandra X-ray Observatory (CXO) { the NASA's third great spa
eobservatories now have been su

essfully operated for three years and have brought us fruitful s
ienti�
 resultswith many ex
iting dis
overies. A major a
hievement of the CXO 
ompared to previous X-ray missions is itsunpre
edented spatial resolution (< 0:500 FWHM). This is mainly due to the design and manufa
ture of itsX-ray mirrors. These mirrors are the largest, most pre
ise grazing in
iden
e opti
s ever built. At 0.84-m longand 0.6 { 1.2-m in diameters, the surfa
e area of ea
h mirror ranging from 1.6 to 3.2 square meters. They werepolished to the highest quality ever a
hieved for any X-ray mirrors of this size. The surfa
e roughness of thesemirrors is 
omparable to or less than the X-ray wavelengths in the 0.1{10 keV band over most of the mirrorsurfa
es.Further author information: Ping Zhao: E-mail: zhao�
fa.harvard.edu



However, the mirrors are not perfe
t, and 
onsequently there are still small amount of s
attered X-rays. Weneed an a

urate model of the X-ray s
attering to fully evaluate the CXO performan
e and analyze the s
ienti�
data. We have built a raytra
e 
omputer model to simulate the CXO performan
e. In the 
urrent raytra
emodel, the re
e
tion and s
attering are treated as separate e�e
ts. Ea
h ray hit the mirror is re
e
ted a

ordingthe re
e
tivity of the surfa
e geometry and the low frequen
y surfa
e map, but not the high frequen
y roughness,therefore the e�e
t of the surfa
e roughness on the re
e
tion eÆ
ien
y is lost. The s
attering is treated withsmall (s
attering) angle approximation.Our new method treats the re
e
tion and s
attering together, and 
onsequently both depend upon thesurfa
e roughness. It does not require the approximation that the s
attering angle is small 
ompared to thegrazing angle so that all the s
attered rays 
an be tra
ed a

urately.2. POWER SPECTRAL DENSITY OF ROUGH SURFACESA rough surfa
e is des
ribed, statisti
ally, by its surfa
e Power Spe
tral Density (PSD) as a fun
tion of thesurfa
e spatial frequen
y, f . Consider a 1-dimensional surfa
e with length L and surfa
e height (i.e. deviationfrom a perfe
tly 
at surfa
e): z = h(x), whi
h assumes the value z (�1 < z <1). Its PSD is de�ned as:�PSD(f) � 2W1(f) = 2L �����Z L=2�L=2 e{2�xfh(x)dx�����2 (1)The PSD, as it is de�ned, is the \spe
trum" of the surfa
e roughness. Its value at f is simply the \power"at that frequen
y. It is easy to distinguish between periodi
 and random rough surfa
es from their PSDs. Forperiodi
 rough surfa
es, there are some \spe
tral lines" in their PSDs; while these lines don't exist for a realrandom rough surfa
e.Given a PSD fun
tion 2W1, the surfa
e roughness amplitude RMS in the frequen
y band of f1 { f2 (bothf1 and f2 are positive) 
an be 
al
ulated as:�2f1�f2 = Z f2f1 2W1(f)df (2)3. CHANDRA X-RAY OPTICSThe Chandra X-ray opti
s { High Resolution Mirror Assembly (HRMA) { is an assembly of four nested WolterType-I (paraboloid and hyperboloid) grazing in
iden
e mirrors made of Zerodur and 
oated with iridium (Ir).4{6The mirror elements were polished by Hughes Danbury Opti
al Systems, In
. (HDOS) in Danbury, CT. Thesurfa
e roughness was measured during the HDOS metrology measurements after the �nal polishing, but beforethe iridium 
oating.7 Tests 
ondu
ted on sample 
ats before and after the 
oating indi
ate that the 
oatingdoes not 
hange the surfa
e roughness.The instruments used for the measurements were the Cir
ularity and Inner Diameter Station (CIDS), thePre
ision Metrology Station (PMS), and the Mi
ro Phase Measuring Interferometer (MPMI, aka WYKO). TheCIDS was used to determine the 
ir
ularity and the inner diameters. The PMS was used to measure alongindividual axial meridians. With these two instruments, HDOS essentially measured the `hoops' and `staves' ofea
h mirror barrel, and thus mapped the entire surfa
e. The mi
ro-roughness was sampled along meridian atdi�erent azimuths using the WYKO instrument at three di�erent magni�
ations (�1.5, �10 & �40).7, 8These metrology data were Fourier transformed and �ltered. The low frequen
y parts of the CIDS and PMSdata were used to form mirror surfa
e deformation (from the designed mirror surfa
e) maps. The high frequen
yparts of the PMS data and the WYKO data were used to estimate the surfa
e mi
ro-roughness. Both of themare parts of the HRMA model we built for the raytra
e simulation of the Chandra performan
e.�The de�nition 2W1 is 
onventional, where the subs
ript 1 denotes 1-dimensional; the PSD satis�es PSD(�f) =PSD(f), and typi
ally positive frequen
y limits are used for most spe
tral integrals. The total power, �2, is the integralof 2W1 from f = 0 to 1, i.e. �2 = R10 2W1(f)df .



Table 1. HRMA Mirror Se
tions and Their Surfa
e RoughnessHRMA Se
tions Num ofMirror Surfa
e Roughness Amplitude RMS �1�1000=mm (�A) Se
tionsP1 LC LB LA M (88%) SA SB SC 750.3 8.49 4.51 3.58 4.91 5.94 53.9P3 LB LA M (92%) SA SB 55.37 5.26 1.96 2.38 4.83P4 LB LA M (93%) SA SB 56.41 3.15 2.57 3.21 6.81P6 LB LA M (94%) SA SB 537.1 5.23 3.34 5.65 20.9H1 LD LC LB LA M (88%) SA SB SC SD SE SF 1126.9 5.34 3.64 3.34 3.32 3.32 3.32 3.32 3.53 7.30 60.3H3 LC LB LA M (92%) SA SB SC SD 84.87 2.90 2.23 2.08 2.08 2.10 3.95 5.56H4 LD LC LB LA M (93%) SA SB SC SD SE 107.18 3.83 2.61 2.57 2.36 2.36 2.74 2.68 4.01 29.4H6 LD LC LB LA M (94%) SA SB SC SD SE 1019.0 4.92 2.51 2.23 1.95 1.95 1.95 2.07 2.96 15.9Total 61The mirror surfa
e mi
ro-roughness has little variation with azimuth, but tends to be
ome worse near themirror ends. We divided the data for ea
h mirror into several axial se
tions whi
h were sele
ted so that themeasured roughness at several pla
es within a se
tion were reasonably uniform; this resulted in a total of 61se
tions. We then averaged the PSD measurements within ea
h se
tion to provide an estimate of the PSDfor that portion of the mirror element. Table 1 shows the resulting surfa
e roughness in the 61 HRMA mirrorse
tions. The eight mirrors are named P1,3,4,6 (paraboloid) and H1,3,4,6 (hyperboloid) due to histori
al reasons(there were 6 mirror pairs when the HRMA was designed). The number underneath ea
h se
tion name is thesurfa
e roughness amplitude RMS, �1�1000=mm, 
al
ulated a

ording to Eq. (2) for f = 1� 1000 mm�1. Ea
hmirror is 838.2 mm in length. The middle se
tions (M), whi
h are the best polished and hen
e have the lowestPSDs, 
over most part of the mirror surfa
e (the number in parentheses after ea
h M denote the per
entage
overage). The �'s for the M se
tions are only 2{3 �A. The end se
tions, where the �'s are relatively higher,
over a very small part of the mirror (< 1%), and hen
e 
ontribute very little to the mirror performan
e.Figures 1 and 2 show the PSDs of the M (middle) and SC (small end) se
tions of P1. P1 and H1 were the �rstpolished mirror pair and are slightly \rougher" than other pairs (see Table 1). The dash and dotted lines showthe data from di�erent measurements: the PMS data are in the low frequen
y range (f = 0:001� 0:3 mm�1);the WYKO data with 3 magni�
ations are in the higher frequen
y range (f = 0:3 � 1000 mm�1). The solidline is the 
ombined PSD from all four frequen
y ranges. The SC se
tion obviously is mu
h rougher than theM se
tion. 4. MODEL SURFACESTypi
ally, a random rough surfa
e is only des
ribed by its PSD. Most of the methods 
al
ulate the s
atteringfrom the surfa
e PSD. However, our method 
al
ulates the s
attering dire
tly from the surfa
e high frequen
yspatial pro�le. Therefore, we �rst need to 
onstru
t a model surfa
e that is 
onsistent with a given PSD. Froma random rough surfa
e pro�le, one 
an derive a unique PSD. But from a given PSD one 
an't 
onstru
t theoriginal surfa
e, be
ause the phase information was lost when deriving the PSD. However, one 
an 
onstru
tmany model surfa
es with the same roughness as the original one from the given PSD by assigning di�erentrandom phase fa
tors to the spe
tral 
omponent.



Figure 1. Surfa
e PSD of Chandra mirror P1-M, the middle se
tion of mirror P1.

Figure 2. Surfa
e PSD of Chandra mirror P1-SC, the small end se
tion of mirror P1.



To 
onstru
t a 1-dimensional model surfa
e with length L, we need to obtain N 
onse
utive surfa
e heightvalues hi = h(xi) with a �xed interval �x to 
over the surfa
e (i.e. N�x = L), and its surfa
e tangent valuesh0i = h0(xi). In Appendix A, we show that hi and h0i 
an be 
omputed from the surfa
e PSD using the followingFourier transforms: hi = 1N N=2Xj=�(N=2�1) Hj e�{ 2�ijN (3)h0i = 1N N=2Xj=�(N=2�1) (�{2�fj Hj) e�{ 2�ijN (4)where Hj = NqPSD(fj) �f2 e{'j , 'j is the assigned random phase fa
tor, and �f = 1=N�x. Both hi and h0iare real, this requires H�j = H�j , i.e. PSD(f�j) = PSD(fj) and '�j = �'j .To 
onstru
t the model surfa
es of HRMA, we 
hoose N = 221 and �x = 0:0004 mm. So L = N�x =838:86 mm, and �f = 1=N�x = 0:001192 mm�1. Figures 3 and 4 show one set of model surfa
e se
tions P1-Mand P1-SC, 
onstru
ted using Eqs. (3) and (4) with these parameters.5. SCATTERING FROM MODEL SURFACESIn this se
tion, we 
al
ulate the s
attering of plane in
ident waves from a surfa
e model; most of the detailedderivations of the formulae 
an be found in Appendi
es B and C.We assume that the surfa
es are suÆ
iently smooth so that: 1) there is no shadowing of one part of thesurfa
e by another; and 2) there is no re
e
tion from one part of the surfa
e to another, i.e. there are no multiplere
e
tions by the same surfa
e. For an in
ident plane wave with grazing angle �1, the �rst 
ondition requiresthat the absolute values of all the surfa
e tangents, jh0ij, are less than �1. The se
ond 
ondition requires jh0ij lessthan �1=2 (when h0i = ��1=2, the re
e
ted wave is parallel to the surfa
e). The �rst 
ondition is automati
allysatis�ed when the se
ond 
ondition is met. So the surfa
e smoothness 
ondition for applying this method is:jh0ij < �12 (5)This 
ondition is easily satis�ed for all 61 se
tions of the HRMA, as 
an be seen by 
omparing the tangentdistributions in Figures 3 and 4 with the mean grazing angles of the four shells (51:260; 41:270; 36:430; 27:080),The s
attering in the transverse dire
tion, i.e. the o�-plane s
attering, is smaller than that in the planeof in
iden
e by approximately a fa
tor of the grazing angle, and 
onsequently is less than the un
ertaintiesin our surfa
e PSD. Therefore, in this paper, we ignore the o�-plane s
attering and limit our dis
ussion to a1-dimensional surfa
e.The s
attering formula is given by the dis
rete Fourier transform of the �eld on the 
at surfa
e S0, as shownin Eq. (58) in Appendix C:I(�j+q=p) = A ��x sin(�1 � �j+q=p)� �2 ������ N=2Xi=�(N=2�1) �Eie{ 2�iq=pN � e{ 2�ijN ������2 (q = 0; 1; : : : ; p� 1) (6)where the s
attering intensity I is a fun
tion of the s
attering angle �j+q=p, whi
h is the deviation from thespe
ular re
e
tion dire
tion towards the surfa
e; � is the wavelength; Ei is the �eld amplitude, after there
e
tion, on the 
at surfa
e at the uniform grid xi where the model surfa
e was 
onstru
ted. As des
ribedin Appendix C.3, Ei is a fun
tion of the in
ident wave, the model surfa
e height and tangent, and the lo
alre
e
tivity. A is a normalization fa
tor given by Eq. (63). Again we 
hoose N = 221 to use the entire length ofthe model surfa
e for the FFT 
omputation.



Figure 3. A model surfa
e of Chandra mirror se
tion P1-M, whi
h 
overs 88% of the mirror P1. The top two panelsshow the surfa
e height and the surfa
e tangent for a 1 mm se
tion of the model mirror. The bottom panel shows thesurfa
e tangent distribution of the entire surfa
e, whi
h 
an be des
ribed a

urately by a Gaussian with � = 60:200.

Figure 4. A model surfa
e of Chandra mirror se
tion P1-SC, whi
h is the \worst" end-se
tion of the P1 mirror. Thetop two panels show the surfa
e height and the surfa
e tangent for a 1 mm se
tion of the model mirror. The bottompanel shows the surfa
e tangent distribution of the entire surfa
e, whi
h 
an be des
ribed a

urately by a Gaussian with� = 138:700.



Figure 5. The s
attering of 1.49 keV X-rays at 51.260 grazing in
ident angle from the model surfa
e P1-M. The top-leftpanel shows the s
attering �eld intensity verses the s
attering angle. The very sharp peak is at the spe
ular re
e
tiondire
tion � = 0. The asymmetri
 nature of the s
attering is 
learly shown. The top-right panel is the same plot butzoomed into the 
ore of the peak; it shows the Fraunhofer di�ra
tion pattern due to the �nite mirror length. Thebottom-left panel shows the fra
tional En
ir
led Energy (EE) verses the s
attering angle, for both sides of the spe
ulardire
tion, and also their sum. The bottom-right panel shows the s
attering fun
tion S verses the s
attering angle in thesame range as the top-right panel.Figures 5 and 6 show the s
attering results for 1.49 keV X-rays in
ident upon the mirror P1 at its meangrazing angle (51.260). The top two panels show the s
attering �eld intensity verses the s
attering angle. Thesharp peak of spe
ular re
e
tion (top-left) and the Fraunhofer di�ra
tion pattern (top-right) are shown asexpe
ted. The bottom two panels show the fra
tional En
ir
led Energies EE+; EE�; EE and the s
atteringfun
tion S de�ned as: EE+(�) � 1Es Z �0 I(�) d� = 1REi Z �0 I(�) d� (7)EE�(�) � 1Es Z 0�� I(�) d� = 1REi Z 0�� I(�) d� (8)EE(�) � 1Es Z ��� I(�) d� = 1REi Z ��� I(�) d� (9)



Figure 6. S
attering from model surfa
e P1-SC. It has mu
h broader s
attering peak than P1-M.S(�) � 1Es Z ��1 I(�) d� = 1REi Z ��1 I(�) d� (10)where Ei, Es and R are the total in
ident and s
attered energy, and the re
e
tivity of the rough surfa
e asdes
ribed in Appendix C.5. 6. SUMMARY AND FUTURE WORKWe have developed a method to model the wave s
attering from random rough surfa
es. Model surfa
es withthe same roughness as the a
tual surfa
e are 
onstru
ted from the a
tual PSD. The s
attering from the modelsurfa
es is 
al
ulated using the s
attering formulae we derived in this paper. These s
attering formulae arebased on the general Kir
hho� equations but without small angle approximations. This method treats there
e
tion and s
attering together and provides the dependen
e of the re
e
tivity on the surfa
e roughness. Itis appli
able in general and is espe
ially useful for X-ray s
attering at grazing angles. We have applied thismethod to the mirrors of the Chandra X-ray Observatory and have shown that the 
al
ulated s
attering pro�leis as expe
ted, in
luding the Fraunhofer s
attering patterns whi
h result from the �nite length of the surfa
es.This work is still 
ontinuing. Next we will generate s
attering tables, whi
h are the tabulations of thes
attering fun
tion S. Then we will use these s
attering tables in our raytra
e model to simulate the CXOperforman
e and 
ompare it with the real results of the CXO, from both on-orbit observations and its ground
alibrations. This method should be useful for other X-ray teles
ope missions as well.



APPENDIX A. CONSTRUCTION OF MODEL SURFACESA.1. Fourier TransformThe Continuous Fourier Transform equations are9:H(f) = Z 1�1 h(x) e{2�xf dx (forward) (11)h(x) = Z 1�1 H(f) e�{2�xf df (inverse) (12)Here if h is a fun
tion of position, x, in mm, H will be a fun
tion of spatial frequen
y, f , in mm�1.When there are N 
onse
utive sampled values at x = xi with the sampling interval �x, we make thetransform: x ) xi � i �x; h(x)) hi � h(xi); i = �(N2 � 1); : : : ;�1; 0; 1; : : : ; N2 (13)f ) fj � j �f; H(f)) Hj � H(fj)�x ; j = �(N2 � 1); : : : ;�1; 0; 1; : : : ; N2 (14)where �x�f = 1=N . We obtain the Dis
rete Fourier Transform equations:Hj = N=2Xi=�(N=2�1) hi e{ 2�ijN (forward) (15)hi = 1N N=2Xj=�(N=2�1) Hj e�{ 2�ijN (inverse) (16)A.2. Surfa
e HeightFrom Eq (1), we obtain:PSD(f) = 2L �����Z L=2�L=2 e{2�xfh(x)dx�����2 =) rPSD(f) L2 = �����Z L=2�L=2 e{2�xfh(x)dx����� (17)Here PSD(f) is a real 
ontinuous fun
tion of the spatial frequen
y f . We �rst need to 
onvert Eq (17) to adis
rete Fourier transform. Using the equations in A.1 and relation L = N�x = 1=�f , we obtain:jHj j = jH(fj)j�x = 1�xrPSD(fj) L2 = NrPSD(fj) �f2 = ������ N=2Xi=�(N=2�1) hi e{ 2�ijN ������ (18)Therefore Hj 
an be expressed as the forward Fourier transform of hi asHj = NrPSD(fj) �f2 e{'j = N=2Xi=�(N=2�1) hi e{ 2�ijN (19)Hen
e the surfa
e height, h(xi) = hi, 
an be expressed as the inverse Fourier transform of Hjhi = 1N N=2Xj=�(N=2�1) Hj e�{ 2�ijN = 1N N=2Xj=�(N=2�1) NrPSD(fj) �f2 e{'j e�{ 2�ijN (20)where 'j is a random phase fa
tor. A set of surfa
e heights, hi, 
an be generated from a set of phase fa
tor 'j .Therefore for a given PSD, we 
an generate as many sets of surfa
e map (of the same roughness) as we want by
hanging the random phase fa
tor 'j . Be
ause hi, the surfa
e height, has to be real, this requires H�j = H�j ,i.e. PSD(f�j) = PSD(fj) and '�j = �'j .



A.3. Surfa
e TangentSin
e hi = 1N N=2Xj=�(N=2�1) Hj e�{ 2�ijN = 1N N=2Xj=�(N=2�1) Hj e�{2�xifj (21)The surfa
e tangent 
an be obtained by taking the derivative on both sides of Eq. (21) with respe
t to xi:h0i = 1N N=2Xj=�(N=2�1) (�{2�fj Hj) e�{2�xifj = 1N N=2Xj=�(N=2�1) (�{2�fj Hj) e�{ 2�ijN (22)The surfa
e tangent h0i also has to be real. This 
ondition is automati
ally satis�ed be
ause�{2�f�j H�j = � {2�(�fj) H�j = {2�fj H�j = (�{2�fj Hj)� (23)APPENDIX B. KIRCHHOFF SOLUTIONThe wave s
attering from random rough surfa
es is des
ribed by the Kir
hho� solution2 and its far-�eld ap-proximation.

x

z

L/2-L/2Figure 7. Wave s
attering from a random rough surfa
e. A 
at surfa
e S0 with z = 0 lies in the x-y plane (y-axis notshown). A rough surfa
e S has surfa
e height z = h(x; y), deviates from S0. The z axis is normal to the x-y plane andpoints up. In
ident and re
e
ting (or s
attering) wave-ve
tors are shown as k1 and k2. In
ident and re
e
ting grazingangles with respe
t to the surfa
e S0 are �1 and �2. r0 is the observation point where the s
attering is to be measured.As shown in Figure 7, de�ne:� S0 | 2-dimensional 
at surfa
e at z = 0.� S | 2-dimensional rough surfa
e, des
ribed by its surfa
e height z = h(x; y).� E1e{k1�r = E1e{(k1x+k3z) | in
ident plane wave (in the in
ident plane, therefore k2 = 0).� E2e{k2�r = E2e{(kxx+kyy+kzz) | re
e
ted or s
attered wave from the rough surfa
e S.� �1, �2 | in
ident and re
e
ting grazing angles with respe
t to the surfa
e S0.



where k1 and k2 are the wave ve
tors of the in
ident and s
attered waves, so E1 � k1 = 0; E2 � k2 = 0, andk � 2�� = jk1j = qk21 + k23 = jk2j = qk2x + k2y + k2z (24)A ve
tor normal to the lo
al surfa
e on S is given by:n = �r(h(x; y)� z) = � �h(x; y)�x x̂� �h(x; y)�y ŷ + ẑ (25)The �eld at an observation point r0 is given by the integration of 
ontributions from the �eld E(s)e{(k1x+k3z)on the surfa
e S:E(r0) = 1{� ZS Z dsE(s)e{(k1x+k3z) e{krr2 (n̂ � r) = 1{� ZZ dxdyE(s)e{(k1x+k3h(x;y)) e{krr2 (n � r) (26)where ds is an element of surfa
e area; E(s) is given by the in
ident wave E1 multiplied by the suitablere
e
tion 
oeÆ
ient; the ve
tor r goes from the point of integration (x; y; z) to the observation point (x0; y0; z0),and r = jrj; n̂ is a unit ve
tor in the dire
tion of n, and (n̂ � r) ds = (n � r) dxdy. Eq. (26) is known as thegeneral Kir
hho� solution for the wave s
attering.Next we derive the far-�eld approximation of this solution. When the re
e
ting surfa
e is near the origin ofthe 
oordinate system and the observation point is far from the origin, i.e. when (x� x0; y � y0; z � z0), wehave: k2 = kxx̂+ kyŷ + kzẑ = k (x0 � x)jrj x̂+ k (y0 � y)jrj ŷ + k (z0 � z)jrj ẑ � kr0 (x0x̂+ y0ŷ + z0ẑ) (27)r = (x0 � x)x̂+ (y0 � y)ŷ + (z0 � z)ẑ � x0x̂+ y0ŷ + z0ẑ � r0k (kxx̂+ kyŷ + kzẑ) (28)r = jrj = p(x0 � x)2 + (y0 � y)2 + (z0 � z)2 � r0 � x0r0 x� y0r0 y � z0r0 z (29)where r0 = jr0j =px20 + y20 + z20 . Keep the �rst order of r in the phase fa
tor and zeroth order elsewhere:n � r � �r0k �kx �h(x; y)�x + ky �h(x; y)�y � kz� (30)e{kr � e{k(r0� x0r0 x� y0r0 y� z0r0 z) � e{kr0 e�{(kxx+kyy+kzh(x;y)) (31)Eq. (26) be
omes:E(r0) � � 1{� ZZ dxdyE(s)e{(k1x+k3z) e{kr0r20 e�{(kxx+kyy+kzz) r0k �kx �h(x; y)�x + ky �h(x; y)�y � kz� (32)= {e{kr02�r0 ZZ dxdyE(s) e{(k1x+k3h(x;y)) e�{(kxx+kyy+kzh(x;y)) �kx�h(x; y)�x + ky �h(x; y)�y � kz� (33)= {e{kr02�r0 ZZ dxdyE(s)e{[(k1�kx)x�kyy+(k3�kz)h(x;y)℄ �kx �h(x; y)�x + ky �h(x; y)�y � kz� (34)This is the far-�eld approximation of the Kir
hho� solution for the wave s
attering.APPENDIX C. SCATTERING FORMULAIn this se
tion, we derive the s
attering formula from the Kir
hho� solution for the 
onstru
ted model surfa
es.
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Figure 8. The s
attering geometry. The 
at surfa
e S0 is lo
ated on the x axis. The z axis is normal to the surfa
e S0.The u-v axes form a 
oordinate system that is rotated 
lo
kwise from the x-z axes by (�2 � �1), so the v axis is alignedwith the spe
ular re
e
tion dire
tion. An in
ident ray, k1, 
omes in from the left with a grazing angle �1; had it stru
kthe surfa
e S0 at x1, it would have been re
e
ted parallel to the v axis as k20. However, it a
tually strikes the roughsurfa
e S at ri(xi; zi), and is re
e
ted at an angle �2 as k2. The interse
tion of k2 with the surfa
e S0 is at xri .C.1. Integral on 1-dimensional 
at surfa
e S0We �rst redu
e the Kir
hho� solution to a 1-dimensional integral on 
at surfa
e S0. Consider:� In plane s
attering: ky = 0� One dimensional surfa
e, i.e. h(x; y) only depends on x: h(x; y) = h(x)Eq. (33) be
omes:E(r0) = {e{kr02� Z dxE(s) e{(k1x+k3h(x)) e�{(kxx+kzh(x)) �kx �h(x)�x � kz� (35)here we have omitted a dimensionless fa
tor a = Y=r0, where Y is the transverse surfa
e dimension; this fa
torwill be absorbed later in an overall normalization fa
tor A.Figure 8 shows the s
attering geometry. The in
ident ray, k1, strikes the rough surfa
e at ri(xi; zi) andis re
e
ted as k2, where xi is one of the N positions of the 
onstru
ted model surfa
e (see Appendix A) andzi = h(xi) = hi. The re
e
ted �eld at ri isE(ri) e{(k1xi+k3zi) = E(xi; hi) e{(k1xi+k3hi) (36)



For the integral (35), this is equivalent to have a �eld at (xri ; 0), the interse
tion of k2 and x axis, on thesurfa
e S0 des
ribed by: E(xri ; 0) = E(ri) e{(k1xi+k3hi�khi=sin �2) (37)where khi=sin �2 is the phase delay between (xi; hi) and (xri ; 0). Let:E(xri) = E(xri ; 0) e�{k1xri = E(ri) e{(k1xi+k3hi�khi=sin �2�k1xri ) = E(ri) e{ �i (38)So the integral (35) 
an be written asE(r0) = {e{kr02� Z dxE(x) e{(k1x�kxx�kzh(x)) �kx �h(x)�x � kz� (39)Now the integration boundary has 
hanged from E(s) on the rough surfa
e S to E(x) on the 
at surfa
e S0,so h(x) = 0 and �h(x)�x = 0. Therefore Eq. (39) be
omes:E(r0) = E(kx; kz) = {e{kr02� Z dxE(x) e{(k1�kx)x (�kz) = � {kze{kr02� Z dxE(x) e{(k1�kx)x (40)here the re
e
ted �eld E(x) are 
al
ulated at non-uniformly distributed, dis
rete points x = xri . The position,xri , and the phase, �i, of the �eld E(xri) are:xri = xi � hitan �2 (41)�i = k1xi + k3hi � khisin �2 � k1xri = k�
os �1xi � sin �1hi � hisin �2 � 
os �1�xi � hitan �2��= �khi�sin �1 + 1sin �2 � 
os �1tan �2� = � k hi 1� 
os(�1 + �2)sin �2 = � 2 k hi sin2 �1+�22sin �2 (42)where k3 = �ksin �1, be
ause, by de�nition, the z axis points up.Thus for the �eld E(s) of ea
h ray k1 at ri, we 
an use its equivalent �eld E(x) at xri to do the integral(xri < xi when hi > 0, xri > xi when hi < 0).C.2. Fourier transform with variable �De�ne a 
oordinate system u-v that is rotated 
lo
kwise from the x-z axes by (�2 � �1), so the v axis is alignedwith the spe
ular re
e
tion dire
tion (see Figure 8). De�ne the s
attering angle, �, as the angle of deviation
lo
kwise from the v axis, i.e. � = �1 � �2. Also de�ne the variable � = k1�kx2� . Therefore:k1 = k 
os �1; kx = k 
os �2 = k 
os(�1 � �); kz = k sin �2 = k sin(�1 � �) (43)2�� = k1 � kx = k 
os �1 � k 
os(�1 � �) = � 2 k sin(�1 � �2) sin �2 (44)� = �1 � 
os�1�
os �1 � 2��k � = �1 � 
os�1 (
os �1 � ��) (45)The s
attering equation (40) be
omes:E(r0) = E(�(�)) = � {e{kr0k sin(�1 � �)2� Z dxE(x) e{2��x = � {e{kr0sin(�1 � �)� Z dxE(x) e{2��x (46)Thus, the s
attering �eld E(�) 
an be obtained from the Fourier transform integral of the �eld E(x) on thesurfa
e S0. And it 
an be 
an be expressed as E(�) using Eq. (44).



C.3. Dis
rete Fourier transform at xiIn pra
ti
e, this integral is performed numeri
ally using the Fast Fourier Transform (FFT) on N uniformlydistributed points xi's where we 
onstru
ted the model surfa
e. Therefore we need to 
onvert the �eld E(xri)to the �eld E(xi). This 
an be simply done by multiplying E(xri) with two fa
tors:E(xi) = AiBi E(xri) = Ai BiE(xi � hitan �2 ) = Ai BiE(ri) e{�i (47)Where the fa
tor Ai is used to adjust the in
ident plane wave density due to the di�erent surfa
e height hi'sat the uniform grid xi's; it is 
al
ulated by inter
epting all the in
ident rays that strike on the surfa
e S at(xi; hi)'s with a 
oordinate that is perpendi
ular to the dire
tion of in
iden
e. Let the inter
epting points bewi's on the 
oordinate. Then: Ai = wi+1 � wi�12�x sin�1 (48)The fa
tor Bi is used to adjust the outgoing ray density due to the redistribution of the re
e
ted rays from thenon-uniform grid xri to the uniform grid xi. For example, when the point xri falls between the �xed grid pointsxi�1 and xi (xi � xi�1 = �x), thenxi � xri�x E(xri) is added to �eld E(xi�1) (49)xri � xi�1�x E(xri) is added to �eld E(xi) (50)This pro
ess is done for ea
h ray until all the �elds are redistributed to the uniform grid xi.Having obtained the �eld E(xi) on uniform grid, xi, we 
an rewrite the s
attering equation (46) as thedis
rete Fourier transform (see Appendix A.1). Let:x ) xi � i �x; E(x) ) Ei � E(xi); i = �(N2 � 1); : : : ;�1; 0; 1; : : : ; N2 (51)� ) �j � j ��; E(�) ) Ej � E(�j)�x ; j = �(N2 � 1); : : : ;�1; 0; 1; : : : ; N2 (52)where �x�� = 1=N . The s
attering equation (46) be
omes:Ej � E(�j)�x = � {e{kr0sin(�1 � �j)� N=2Xi=�(N=2�1) Ei e{ 2�ijN (53)where Ei = E(xi) = Ai BiE(ri) e{�i = Ai Bi E1R(�1 + tan�1(h0i)) e{�i (54)where R(�1+ tan�1(h0i)) is the re
e
tion 
oeÆ
ient of ray i with the lo
al grazing angle, �1+ tan�1(h0i), on therough surfa
e S. h0i is the lo
al surfa
e tangent of the model surfa
e.The s
attering intensity, I , is given as a fun
tion of the s
attering angle, �, by:I(�j) = I(�(�j)) � AE(�j)E�(�j) = A ��x sin(�1 � �j)� �2 ������ N=2Xi=�(N=2�1) Ei e{ 2�ijN ������2 (55)where A is a normalization fa
tor whi
h we will derive in se
tion C.5.



C.4. S
attering formula { the Fraunhofer di�ra
tion patternWith the Eq. (55), it seems that we 
an �nally obtain the pro�le of s
attering from the rough surfa
e. However,this is not quite true, be
ause of the dis
rete Fourier transform. The main disadvantage of the dis
rete Fouriertransform is (what else?) \dis
rete". Its short
omings are displayed perfe
tly in this 
ase. Eq. (55) is 
orre
t,but all of the points ex
ept the 
entral peak (�j = 0) are 
al
ulated in the valleys of the Fraunhofer di�ra
tionpattern at: �j = � j �N �x sin �1 = � j �L sin �1 ; j = �1;�2;�3; : : : (56)where L is the surfa
e length. In 
ase of a perfe
t surfa
e, Eq. (55) gives I(�j) = 0 ex
ept for one point at j = 0,and the 
orre
t di�ra
tion pattern from the �nite surfa
e length is not obtained. To get the di�ra
tion patternsat angles between �j and �j+1, we divide �j+1� �j into p equal spa
es. The di�ra
tion pattern at �j+q=p(q < p)
an be 
al
ulated as:I(�j+q=p) = A ��x sin(�1 � �j+q=p)� �2 ������ N=2Xi=�(N=2�1) Ei e{ 2�i(j+q=p)N ������2 (q = 0; 1; 2; : : : ; p� 1) (57)= A ��x sin(�1 � �j+q=p)� �2 ������ N=2Xi=�(N=2�1) �Eie{ 2�iq=pN � e{ 2�ijN ������2 (58)So instead of one Fourier transform equation on Ei, we need do p Fourier transform equations on Ei e{ 2�iq=pN .Usually, p = 8 is suÆ
ient to 
al
ulate very ni
e Fraunhofer di�ra
tion patterns. Eq. (58) is the �nal s
atteringformula. It maps the �eld on the surfa
e, E(x), to the �eld intensity of s
attering, I(�).C.5. NormalizationNow let's derive the normalization fa
tor A introdu
ed in Eq. (55). Let " be the energy 
arried by ea
h of theN in
ident rays of the plane wave E1. The total in
ident energy, Ei, total re
e
ted energy on the surfa
e, Er,and the total s
attered energy, Es, are:Ei = N" (59)Er = N=2Xi=�(N=2�1) jEij2 = " N=2Xi=�(N=2�1) A2i B2i ��R(�1 + tan�1(h0i))��2 (60)Es = Z d� I(�) = A Z d� jE(�)j2 (61)De�ne the re
e
tivity of the rough surfa
e as:R � ErEi = 1N N=2Xi=�(N=2�1) A2i B2i ��R(�1 + tan�1(h0i))��2 (62)Let Er = Es. We obtain:A = "PN=2i=�(N=2�1) A2i B2i ��R(�1 + tan�1(h0i))��2R d� jE(�)j2 = "NRR d� jE(�)j2 = EiRR d� jE(�)j2 (63)
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