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ABSTRACT

This paper presents a method for modeling the X-ray scattering from random rough surfaces. An actual rough
surface is (incompletely) described by its Power Spectral Density (PSD). For a given PSD, model surfaces with
the same roughness as the actual surface are constructed by preserving the PSD amplitudes and assigning a
random phase to each spectral component. Rays representing the incident wave are reflected from the model
surface and projected onto a flat plane, which approximates the model surface, as outgoing rays and corrected
for phase delays. The projected outgoing rays are then corrected for wave densities and redistributed onto
an uniform grid where the model surface is constructed. The scattering is then calculated by taking the Fast
Fourier Transform (FFT) of the resulting distribution. This method is generally applicable and is not limited
to small scattering angles. It provides the correct asymmetrical scattering profile for grazing incident radiation.
We apply this method to the mirrors of the Chandra X-ray Observatory and show the results. We also expect
this method to be useful for other X-ray telescope missions.
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1. INTRODUCTION

The study of scattering from random rough surfaces goes back at least to Rayleigh in 1887,! and has been
investigated by many physicists and engineers. The problem has been the subject of numerous books, including
the classic “The Scattering of Electromagnetic Waves From Rough Surfaces” by Beckmann and Spizzichino?
and countless research papers.> Many people have also studied X-ray scattering at grazing angles as part of this
subject. This problem is even more difficult because of the short wavelength (compared to the scale of the surface
roughness) and the small angle between the wave propagation direction and the surface. Most approaches in
the literature make the approximation that the scattering angle is much smaller than the incident grazing angle.
Some of the treatments use the approximation that the surfaces are sufficiently “smooth” so that a low order
expansion in the surface height errors is adequate, and consequently are limited in their applications. Many of
the approaches can not obtain the scattering asymmetry around the direction of specular reflection (scattering
towards vs. away from the surface). These approximations are not adequate for many of the applications
involving X-ray mirrors.

This new study of the century old problem is motivated by our direct involvement of the evaluation of
the X-ray mirror performance aboard the Chandra X-ray Observatory (CXO) — the NASA’s third great space
observatories now have been successfully operated for three years and have brought us fruitful scientific results
with many exciting discoveries. A major achievement of the CXO compared to previous X-ray missions is its
unprecedented spatial resolution (< 0.5 FWHM). This is mainly due to the design and manufacture of its
X-ray mirrors. These mirrors are the largest, most precise grazing incidence optics ever built. At 0.84-m long
and 0.6 — 1.2-m in diameters, the surface area of each mirror ranging from 1.6 to 3.2 square meters. They were
polished to the highest quality ever achieved for any X-ray mirrors of this size. The surface roughness of these
mirrors is comparable to or less than the X-ray wavelengths in the 0.1-10 keV band over most of the mirror
surfaces.
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However, the mirrors are not perfect, and consequently there are still small amount of scattered X-rays. We
need an accurate model of the X-ray scattering to fully evaluate the CXO performance and analyze the scientific
data. We have built a raytrace computer model to simulate the CXO performance. In the current raytrace
model, the reflection and scattering are treated as separate effects. Each ray hit the mirror is reflected according
the reflectivity of the surface geometry and the low frequency surface map, but not the high frequency roughness,
therefore the effect of the surface roughness on the reflection efficiency is lost. The scattering is treated with
small (scattering) angle approximation.

Our new method treats the reflection and scattering together, and consequently both depend upon the
surface roughness. It does not require the approximation that the scattering angle is small compared to the
grazing angle so that all the scattered rays can be traced accurately.

2. POWER SPECTRAL DENSITY OF ROUGH SURFACES

A rough surface is described, statistically, by its surface Power Spectral Density (PSD) as a function of the
surface spatial frequency, f. Consider a 1-dimensional surface with length L and surface height (i.e. deviation
from a perfectly flat surface): z = h(z), which assumes the value z (—oo0 < z < 00). Its PSD is defined as:*

L2 2

PSD(f) =2Wi(f) = % /L/2 e b(z)da

(1)

The PSD, as it is defined, is the “spectrum” of the surface roughness. Its value at f is simply the “power”
at that frequency. It is easy to distinguish between periodic and random rough surfaces from their PSDs. For
periodic rough surfaces, there are some “spectral lines” in their PSDs; while these lines don’t exist for a real
random rough surface.

Given a PSD function 2W3, the surface roughness amplitude RMS in the frequency band of f; — f2 (both
f1 and fo are positive) can be calculated as:

f2
= /f oW (e (@)

3. CHANDRA X-RAY OPTICS

The Chandra X-ray optics — High Resolution Mirror Assembly (HRMA) — is an assembly of four nested Wolter
Type-1 (paraboloid and hyperboloid) grazing incidence mirrors made of Zerodur and coated with iridium (Ir).*®
The mirror elements were polished by Hughes Danbury Optical Systems, Inc. (HDOS) in Danbury, CT. The
surface roughness was measured during the HDOS metrology measurements after the final polishing, but before
the iridium coating.” Tests conducted on sample flats before and after the coating indicate that the coating
does not change the surface roughness.

The instruments used for the measurements were the Circularity and Inner Diameter Station (CIDS), the
Precision Metrology Station (PMS), and the Micro Phase Measuring Interferometer (MPMI, aka WYKO). The
CIDS was used to determine the circularity and the inner diameters. The PMS was used to measure along
individual axial meridians. With these two instruments, HDOS essentially measured the ‘hoops’ and ‘staves’ of
each mirror barrel, and thus mapped the entire surface. The micro-roughness was sampled along meridian at
different azimuths using the WYKO instrument at three different magnifications (x1.5, x10 & x40).7-8

These metrology data were Fourier transformed and filtered. The low frequency parts of the CIDS and PMS
data were used to form mirror surface deformation (from the designed mirror surface) maps. The high frequency
parts of the PMS data and the WYKQO data were used to estimate the surface micro-roughness. Both of them
are parts of the HRMA model we built for the raytrace simulation of the Chandra performance.

*The definition 2W; is conventional, where the subscript 1 denotes 1-dimensional; the PSD satisfies PSD(—f) =
PSD(f), and typically positive frequency limits are used for most spectral integrals. The total power, o2, is the integral
of 2W1 from f = 0 to oo, i.e. o = [~ 2W1(f)df.



Table 1. HRMA Mirror Sections and Their Surface Roughness

HRMA Sections Num of
Mirror Surface Roughness Amplitude RMS 71000 /mm (A) Sections
P1 LC LB LA M (88%) SA SB SC 7
50.3 8.49 4.51 3.58 491 594 539
P3 LB LA M (92%) SA SB 5
5.37 5.26 1.96 2.38 4.83
P4 LB LA M(@©3%)) SA SB 5
6.41 3.15 2.57 3.21 6.81
P6 IB LA M (94%) SA SB 5
37.1 5.23 3.34 5.65 20.9
Al | LD LC LB LA M (8%) SA SB SC SD SE SF 11
26.9 5.34 3.64 3.34 3.32 3.32 3.32 3.32 353 7.30 60.3
H3 LC LB LA M(@©H2%) SA SB SC SD 8
4.87 2.90 2.23 2.08 2.08 210 3.95 5.56
M4 | LD LC LB LA M (93%) SA SB SC SD SE 10
7.18 3.83 2.61 2.57 2.36 236 2.74 2.68 4.01 294
M6 | LD LC LB LA M (94%) SA SB SC SD SE 10
19.0 4.92 2.51 2.23 1.95 1.95 195 2.07 296 15.9
Total 61

The mirror surface micro-roughness has little variation with azimuth, but tends to become worse near the
mirror ends. We divided the data for each mirror into several axial sections which were selected so that the
measured roughness at several places within a section were reasonably uniform; this resulted in a total of 61
sections. We then averaged the PSD measurements within each section to provide an estimate of the PSD
for that portion of the mirror element. Table 1 shows the resulting surface roughness in the 61 HRMA mirror
sections. The eight mirrors are named P1,3,4,6 (paraboloid) and H1,3,4,6 (hyperboloid) due to historical reasons
(there were 6 mirror pairs when the HRMA was designed). The number underneath each section name is the
surface roughness amplitude RMS, 01 _1000/mm, calculated according to Eq. (2) for f =1 — 1000 mm~!. Each
mirror is 838.2 mm in length. The middle sections (M), which are the best polished and hence have the lowest
PSDs, cover most part of the mirror surface (the number in parentheses after each M denote the percentage
coverage). The o’s for the M sections are only 2-3 A. The end sections, where the o’s are relatively higher,
cover a very small part of the mirror (< 1%), and hence contribute very little to the mirror performance.

Figures 1 and 2 show the PSDs of the M (middle) and SC (small end) sections of P1. P1 and H1 were the first
polished mirror pair and are slightly “rougher” than other pairs (see Table 1). The dash and dotted lines show
the data from different measurements: the PMS data are in the low frequency range (f = 0.001 — 0.3 mm1);
the WYKO data with 3 magnifications are in the higher frequency range (f = 0.3 — 1000 mm~?!). The solid
line is the combined PSD from all four frequency ranges. The SC section obviously is much rougher than the
M section.

4. MODEL SURFACES

Typically, a random rough surface is only described by its PSD. Most of the methods calculate the scattering
from the surface PSD. However, our method calculates the scattering directly from the surface high frequency
spatial profile. Therefore, we first need to construct a model surface that is consistent with a given PSD. From
a random rough surface profile, one can derive a unique PSD. But from a given PSD one can’t construct the
original surface, because the phase information was lost when deriving the PSD. However, one can construct
many model surfaces with the same roughness as the original one from the given PSD by assigning different
random phase factors to the spectral component.



PSD 2W, (A* mm)

PSD 2W, (A* mm)

Power Spectral Density of pl M

6
10 I I I I I
Combined PSD
s S_pl Cx1.5_M_psd_1
- —-—-—- S_pl Cx10.0_M_psd_1
7777777 S_p1_C_x40.0_M_psd_1
104 ) —— pl_C_bB_M_al_psd_1 —|
L ! _
|
10%— —
100 —
1073 —
1074~ b
1076 | | | | | |
0.001 0.010 0.100 1.000 10.000 100.000 1000.000

Spatial Frequency f (mm™)
ZHAO 14Aus02

Figure 1. Surface PSD of Chandra mirror P1-M, the middle section of mirror P1.
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Figure 2. Surface PSD of Chandra mirror P1-SC, the small end section of mirror P1.



To construct a 1-dimensional model surface with length L, we need to obtain N consecutive surface height
values h; = h(z;) with a fixed interval Az to cover the surface (i.e. NAz = L), and its surface tangent values
hi = h'(z;). In Appendix A, we show that h; and h} can be computed from the surface PSD using the following
Fourier transforms:

1 _2mii
h; = N ' Hj e N (3)
j=—(N/2-1)
N/2
) 1 2z
Moo= (—2nf; Hj) e N (4)
j=—(N/2-1)

where H; = N w e'¥i, @, is the assigned random phase factor, and Af = 1/NAz. Both h; and A
are real, this requires H_; = H}, i.e. PSD(f-;) = PSD(f;) and p_; = —¢;.

To construct the model surfaces of HRMA, we choose N = 22! and Az = 0.0004 mm. So L = NAz =
838.86 mm, and Af = 1/NAz = 0.001192 mm . Figures 3 and 4 show one set of model surface sections P1-M
and P1-SC, constructed using Egs. (3) and (4) with these parameters.

5. SCATTERING FROM MODEL SURFACES

In this section, we calculate the scattering of plane incident waves from a surface model; most of the detailed
derivations of the formulae can be found in Appendices B and C.

We assume that the surfaces are sufficiently smooth so that: 1) there is no shadowing of one part of the
surface by another; and 2) there is no reflection from one part of the surface to another, i.e. there are no multiple
reflections by the same surface. For an incident plane wave with grazing angle 6, the first condition requires
that the absolute values of all the surface tangents, |h}|, are less than §;. The second condition requires |h}| less
than 0; /2 (when h} = —6,/2, the reflected wave is parallel to the surface). The first condition is automatically
satisfied when the second condition is met. So the surface smoothness condition for applying this method is:

i 01
hil < 5 (5)

This condition is easily satisfied for all 61 sections of the HRMA, as can be seen by comparing the tangent
distributions in Figures 3 and 4 with the mean grazing angles of the four shells (51.26',41.27', 36.43',27.08'),

The scattering in the transverse direction, i.e. the off-plane scattering, is smaller than that in the plane
of incidence by approximately a factor of the grazing angle, and consequently is less than the uncertainties
in our surface PSD. Therefore, in this paper, we ignore the off-plane scattering and limit our discussion to a
1-dimensional surface.

The scattering formula is given by the discrete Fourier transform of the field on the flat surface Sg, as shown
in Eq. (58) in Appendix C:

. /2
Az sin(6; — 0, N2 il 2ria/p\ |, 2mii
= (b | 8 gy o
i=—(N/2-1)

where the scattering intensity I is a function of the scattering angle 6, ,/,, which is the deviation from the
specular reflection direction towards the surface; A is the wavelength; E; is the field amplitude, after the
reflection, on the flat surface at the uniform grid z; where the model surface was constructed. As described
in Appendix C.3, E; is a function of the incident wave, the model surface height and tangent, and the local
reflectivity. A is a normalization factor given by Eq. (63). Again we choose N = 22! to use the entire length of
the model surface for the FFT computation.
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Figure 3. A model surface of Chandra mirror section P1-M, which covers 88% of the mirror P1. The top two panels
show the surface height and the surface tangent for a 1 mm section of the model mirror. The bottom panel shows the
surface tangent distribution of the entire surface, which can be described accurately by a Gaussian with o = 60.2".
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Figure 5. The scattering of 1.49 keV X-rays at 51.26' grazing incident angle from the model surface P1-M. The top-left
panel shows the scattering field intensity verses the scattering angle. The very sharp peak is at the specular reflection
direction # = 0. The asymmetric nature of the scattering is clearly shown. The top-right panel is the same plot but
zoomed into the core of the peak; it shows the Fraunhofer diffraction pattern due to the finite mirror length. The
bottom-left panel shows the fractional Encircled Energy (EE) verses the scattering angle, for both sides of the specular
direction, and also their sum. The bottom-right panel shows the scattering function S verses the scattering angle in the
same range as the top-right panel.

Figures 5 and 6 show the scattering results for 1.49 keV X-rays incident upon the mirror P1 at its mean
grazing angle (51.26). The top two panels show the scattering field intensity verses the scattering angle. The
sharp peak of specular reflection (top-left) and the Fraunhofer diffraction pattern (top-right) are shown as
expected. The bottom two panels show the fractional Encircled Energies EE,, FE_, EE and the scattering
function S defined as:

o1 1 [

BE.0) = & [ 10088 = = /0 1(6) d (M)
_1 0 1

FE.(0) = & [ 0 = o= [ RO (8)
[4 [4

EE@©) = gi[g 16)d6 — ngi [9 1(6) d6 )
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Figure 6. Scattering from model surface P1-SC. It has much broader scattering peak than P1-M.

S0 = gl/g 1(6)do = Rl& ' 1(6) de (10)

where &;, £ and R are the total incident and scattered energy, and the reflectivity of the rough surface as
described in Appendix C.5.

6. SUMMARY AND FUTURE WORK

We have developed a method to model the wave scattering from random rough surfaces. Model surfaces with
the same roughness as the actual surface are constructed from the actual PSD. The scattering from the model
surfaces is calculated using the scattering formulae we derived in this paper. These scattering formulae are
based on the general Kirchhoff equations but without small angle approximations. This method treats the
reflection and scattering together and provides the dependence of the reflectivity on the surface roughness. It
is applicable in general and is especially useful for X-ray scattering at grazing angles. We have applied this
method to the mirrors of the Chandra X-ray Observatory and have shown that the calculated scattering profile
is as expected, including the Fraunhofer scattering patterns which result from the finite length of the surfaces.

This work is still continuing. Next we will generate scattering tables, which are the tabulations of the
scattering function S. Then we will use these scattering tables in our raytrace model to simulate the CXO
performance and compare it with the real results of the CXO, from both on-orbit observations and its ground
calibrations. This method should be useful for other X-ray telescope missions as well.



APPENDIX A. CONSTRUCTION OF MODEL SURFACES
A.1l. Fourier Transform

The Continuous Fourier Transform equations are’:

H(f) = /700 h(z) e dz (forward) (11)

h(z) = [00 H(f) e 2mef df (inverse) (12)

Here if h is a function of position, z, in mm, H will be a function of spatial frequency, f, in mm™?!.

When there are N consecutive sampled values at £ = x; with the sampling interval Az, we make the
transform:

N N
z = z;=1iAz, h(z) = h; = h(z;), i:f(?fl),...,fl,O,l,...,E (13)
) H(f;) ) N N
=i A H H; = —* =—(=-1),...,-1,0,1,..., — 14
f i .f] J .f’ (.f):> Vi AI 9 J (2 )’ I 307 L] 72 ( )
where AzAf =1/N. We obtain the Discrete Fourier Transform equations:
N/2
2mij
H;, = Z h; e~ (forward) (15)
i=—(N/2-1)
N/2
2mij
h; = N Z Hje '™ (inverse) (16)
j=—(N/2-1)
A.2. Surface Height
From Eq (1), we obtain:
2
2 | [L2 PSD(f) L Ly
PSD(f) = = / e p(z)dz PSDUNL _ / e h(z)dz (17)
L —L/2 2 —L/2

Here PSD(f) is a real continuous function of the spatial frequency f. We first need to convert Eq (17) to a
discrete Fourier transform. Using the equations in A.1 and relation L = NAz = 1/Af, we obtain:

H(f; 1 [PSD(f) L [PSD(f) A N2 2mis

i=—(N/2-1)
Therefore H; can be expressed as the forward Fourier transform of h; as
N/2
PSD(f;) A 2mij
H; = N 7(53) L es — > hie (19)
i=—(N/2—1)

Hence the surface height, h(z;) = h;, can be expressed as the inverse Fourier transform of H;

N/2 N/2

1 a2z 1 [PSD(fi) Af ., —i2mis
hz:N Z HJC N :N Z N fe‘pe N (20)
j=—(N/2-1) j=—(N/2-1)

where ¢; is a random phase factor. A set of surface heights, h;, can be generated from a set of phase factor ¢;.
Therefore for a given PSD, we can generate as many sets of surface map (of the same roughness) as we want by
changing the random phase factor ¢;. Because h;, the surface height, has to be real, this requires H_; = H,
i.e. PSD(f,]) = PSD(f]) and Y= —@j.



A.3. Surface Tangent

Since
. N/2 . N/2
27ij
h; = N E Hj e '~ = N E Hj 67127“”% (21)
j=—(N/2-1) j=—(N/2-1)

The surface tangent can be obtained by taking the derivative on both sides of Eq. (21) with respect to z;:

] N/2 1 N/2
fs _,2mid
hp = 5 Y. (afHy) e h = o YT (a2 Hy) e VR (22)
j=—(N/2-1) j=—(N/2-1)

The surface tangent h; also has to be real. This condition is automatically satisfied because
—2nf oy H j = —2n(—f;) Hf = 2nf; HY = (—2nf; Hj)" (23)

APPENDIX B. KIRCHHOFF SOLUTION

The wave scattering from random rough surfaces is described by the Kirchhoff solution
proximation.

2

and its far-field ap-

L/2 S, L/2

Figure 7. Wave scattering from a random rough surface. A flat surface Sp with z = 0 lies in the x-y plane (y-axis not
shown). A rough surface S has surface height z = h(z,y), deviates from So. The z axis is normal to the x-y plane and
points up. Incident and reflecting (or scattering) wave-vectors are shown as k; and ks. Incident and reflecting grazing
angles with respect to the surface Sy are 8; and 2. rq is the observation point where the scattering is to be measured.

As shown in Figure 7, define:

Sy — 2-dimensional flat surface at 2z = 0.

e S — 2-dimensional rough surface, described by its surface height z = h(z, y).

Ee¥1T = E,e!k1e+ksz) _ jncident plane wave (in the incident plane, therefore ks = 0).

Eye’® 2t = Eye'lhe2thyytk-2) _ reflected or scattered wave from the rough surface S.

01, 82 — incident and reflecting grazing angles with respect to the surface Sy.



where k; and ks are the wave vectors of the incident and scattered waves, so E; - k; = 0, Es - ks = 0, and

2
E= =l = BB = el = Rk R (24)

A vector normal to the local surface on S is given by:

n = —Vhiz,y) —z) = — ‘9’1((;;’@’)&— Bhg’zy)wz (25)

The field at an observation point ry is given by the integration of contributions from the field E(s)e*(k1#+ksz)

on the surface S:
akr zkr
=5 f /dsE Wk1+ksz) eTz ff dedy E(s)e'kratkah(z.y) © — (n-r) (26)

where ds is an element of surface area; E(s) is given by the incident wave E; multiplied by the suitable
reflection coefficient; the vector r goes from the point of integration (x,y, z) to the observation point (zg, yo, 20),
and r = |r|; 0 is a unit vector in the direction of n, and (n-r)ds = (n-r)dzdy. Eq. (26) is known as the
general Kirchhoff solution for the wave scattering.

Next we derive the far-field approximation of this solution. When the reflecting surface is near the origin of
the coordinate system and the observation point is far from the origin, i.e. when (z < zg, y < yo, 2 < 2¢), we
have:

— - - k
r| r| || To
r = (zo—2)X+(yo—y)¥ + (20 —2)2 = zeX+ Yoy + 202 =~ %0 (kX + kyy + k.2) (28)
ro= = Vo @t 9P 2 R ey s (29)
To To To

where g = |[rg| = /23 + y2 + 22. Keep the first order of r in the phase factor and zeroth order elsewhere:

Oh(z,y) Oh(z,y)
. ~ —— |k, —k, 30
noron [ e £
ezkr ~ ezk(To*:—ngz—gy*%Z) ~ etkro e*t(kmz—i—kyy-{-kzh(z,y)) (31)
Eq. (26) becomes:
etkro Oh(z,y) Oh(z,y)
E ~ dxd E k1z+k3z) 7t(kmz+kyy+kzz)r_0 kz ) *kz 9
(xo) // vy 7z ¢ k Fra Ty (32)
rethro Oh(z,y) Oh(z,y)
= dzd E k1w+k3h( y)) ,—i(k.z+kyy+k-h(z,y)) k., 3 k 3 —k, 33
27r7"0 f/ ray € ot + Ky dy (33)
Oh(z,y) , Oh(z,y)

— dzd E z[ (k1—kz)z—kyy+(ks—k:)h(z,y)] kz ) B kz 34
27rr0 // ray O +ky Ay (34)

This is the far-field approximation of the Kirchhoff solution for the wave scattering.

APPENDIX C. SCATTERING FORMULA

In this section, we derive the scattering formula from the Kirchhoff solution for the constructed model surfaces.



u

Figure 8. The scattering geometry. The flat surface Sp is located on the x axis. The z axis is normal to the surface So.
The u-v axes form a coordinate system that is rotated clockwise from the x-z axes by (5 — 1), so the v axis is aligned
with the specular reflection direction. An incident ray, ki, comes in from the left with a grazing angle 6;; had it struck
the surface So at z1, it would have been reflected parallel to the v axis as kag. However, it actually strikes the rough
surface S at r;(zi, zi), and is reflected at an angle 6> as ko. The intersection of ko with the surface Sy is at zy,.

C.1. Integral on 1-dimensional flat surface S

We first reduce the Kirchhoff solution to a 1-dimensional integral on flat surface Sy. Consider:

e In plane scattering: k, =0

e One dimensional surface, i.e. h(z,y) only depends on z: h(z,y) = h(z)

Eq. (33) becomes:

elkTU

oh
E(ro) _ A — /de(S) ez(k1z+k3h(z)) e*t(kmz-f-kzh(z)) |:kz BE;) kz:| (35)

here we have omitted a dimensionless factor a = Y/r, where Y is the transverse surface dimension; this factor
will be absorbed later in an overall normalization factor A.

Figure 8 shows the scattering geometry. The incident ray, ki, strikes the rough surface at r;(z;,2;) and
is reflected as ko, where z; is one of the N positions of the constructed model surface (see Appendix A) and
z; = h(x;) = h;. The reflected field at r; is

E(rz) ez(k1$i+k32i) _ E((Ei, hi) el(k1$i+k3hi) (36)



For the integral (35), this is equivalent to have a field at (z,,,0), the intersection of ky and x axis, on the
surface Sy described by:

E(z,,,0) = E(r;) e!koi+hahi—khi/sin62) (37)
where kh;/sin 6, is the phase delay between (z;, h;) and (z,,,0). Let:
E(z,,) = E(z,,0)e %17 = E(r;) e!(krmithahimhhi/sinfombar,) = g(p;) e ¢ (38)
So the integral (35) can be written as

Zezkro

E(rg) =

fdfliE(fE) ez(klwfkmwszh(w)) [km 62(13) _ kz:| (39)
€T

™

Now the integration boundary has changed from E(s) on the rough surface S to E(z) on the flat surface Sy,
so h(z) = 0 and 8}5(;) = 0. Therefore Eq. (39) becomes:

k k
1ehTo 1k, ethro

fd‘T'E(‘T') et (k) = = = /dIE(a:) gtk k) (40)
™

E(rg) = E(k;,k.) =

here the reflected field E(z) are calculated at non-uniformly distributed, discrete points = z,,. The position,
z,,;, and the phase, ¢;, of the field E(z,,) are:

hi

o = TiT 41
s o tan G- (41)

¢i = kix;+kshi — —— —kiz,, = k|cosbiz; —sinbh; — —— —cosb; | z; — :

sin O sin Oy tan 6

. 1 cos 0 1-— 008(91 + 92) SinQ%

’ (sm Lt sinfs  tan 92> sin O sin 05 (42)
where k3 = —ksin 01, because, by definition, the z axis points up.

Thus for the field E(s) of each ray k; at r;, we can use its equivalent field E(z) at z,, to do the integral
(zr, < x; when h; > 0, z,, > x; when h; < 0).
C.2. Fourier transform with variable ¢

Define a coordinate system u-v that is rotated clockwise from the x-z axes by (5 —61), so the v axis is aligned
with the specular reflection direction (see Figure 8). Define the scattering angle, 6, as the angle of deviation

clockwise from the v axis, i.e. § = #; — 65. Also define the variable £ = ’“2;’“” . Therefore:

ki = kcosby, ky = kcosby = kcos(01—0), k, = ksinfy = k sin(61 —6) (43)

0 0
27§ = ki —ky = kcosbh —kcos(6r—60) = —2k sin(6; — 5) sma (44)

2
§ = 6, —cos? (cos 01 — %f) = 6, —cos ' (cos B — £N) (45)
The scattering equation (40) becomes:

lkTok . 0 79 1kro of 0 70

E(r) = E(€@®) = — ° 52’”( ) / dz E(z) €™ = — %/ dz E(z) €™ (46)
™

Thus, the scattering field E(£) can be obtained from the Fourier transform integral of the field E(x) on the
surface Sp. And it can be can be expressed as E(#) using Eq. (44).



C.3. Discrete Fourier transform at z;

In practice, this integral is performed numerically using the Fast Fourier Transform (FFT) on N uniformly
distributed points z;’s where we constructed the model surface. Therefore we need to convert the field E(z,,)
to the field E(x;). This can be simply done by multiplying E(z,,) with two factors:

h;

E(z;) = AiBiE(z,,) = AiB;E(z; — tan 0y

) = A; BiE(r;) "% (47)

Where the factor A; is used to adjust the incident plane wave density due to the different surface height h;’s
at the uniform grid z;’s; it is calculated by intercepting all the incident rays that strike on the surface S at
(z4, hi)’s with a coordinate that is perpendicular to the direction of incidence. Let the intercepting points be
w;’s on the coordinate. Then:

Wit+1 — Wi—1
A = 4t Tl 48
! 2 Az sinbq (48)
The factor B; is used to adjust the outgoing ray density due to the redistribution of the reflected rays from the
non-uniform grid z,, to the uniform grid z;. For example, when the point z,, falls between the fixed grid points
z;—1 and z; (z; — z;—1 = Az), then

% E(z,,) is added to field E(z;_1) (49)

T

i ;xFl E(z,,) is added to field E(z;) (50)
T

This process is done for each ray until all the fields are redistributed to the uniform grid ;.

Having obtained the field E(z;) on uniform grid, z;, we can rewrite the scattering equation (46) as the
discrete Fourier transform (see Appendix A.1). Let:

N N
z = z;=iAz, E(z) = E;=E(z), z':—(E—l),...,—l,O,l,...,? (51)
iy _ E(¢) . /N N
£ = =08 BEO = E=—L j=—(5-D., o100, (52)
where AzA¢ = 1/N. The scattering equation (46) becomes:
) N/2
_ E() 1e*r0sin (6, — 6;) J2rii
E, = (5 = - 3 Z E; e ~ (53)
i=—(N/2-1)
where
E; = E(z;) = A;B;E(r;)e'® = A; B;E; R(6; + tan™ ' (h})) e (54)

where R(6; +tan—'(h})) is the reflection coefficient of ray i with the local grazing angle, 6; + tan™"(h}), on the

(3
rough surface S. h; is the local surface tangent of the model surface.

The scattering intensity, I, is given as a function of the scattering angle, 8, by:

y i . 2 N/2 2mwij
16;) = 1(665) = AB(E) B () = A (STREE) S g e (55)
i=—(N/2—1)

where A is a normalization factor which we will derive in section C.5.



C.4. Scattering formula — the Fraunhofer diffraction pattern

With the Eq. (55), it seems that we can finally obtain the profile of scattering from the rough surface. However,
this is not quite true, because of the discrete Fourier transform. The main disadvantage of the discrete Fourier
transform is (what else?) “discrete”. Its shortcomings are displayed perfectly in this case. Eq. (55) is correct,
but all of the points except the central peak (6; = 0) are calculated in the valleys of the Fraunhofer diffraction
pattern at:
jA JA .
0; = _7NAmsin91 = _Lsin91’ j==x1,£2,£3,... (56)

where L is the surface length. In case of a perfect surface, Eq. (55) gives I(6;) = 0 except for one point at j = 0,
and the correct diffraction pattern from the finite surface length is not obtained. To get the diffraction patterns
at angles between 6; and 6;,, we divide 6,1 — 6; into p equal spaces. The diffraction pattern at 6,,,/,(q < p)
can be calculated as:

Az sin(6; — 6; N> Nz ,2mitita/p)
I(9j+q/p) = A ( By ita/p ) Z Ez € N (q = 07 13 27 oD — 1) (57)
i=—(N/2-1)
2
Az sin(6, — 0 2 N/ wiq/p 2mij
= A ( @ sin( 1)\ J+!1/:D)> Z (Eie’%) el N (58)
i=—(N/2-1)

27mig/p

So instead of one Fourier transform equation on E;, we need do p Fourier transform equations on E; '~
Usually, p = 8 is sufficient to calculate very nice Fraunhofer diffraction patterns. Eq. (58) is the final scattering
formula. It maps the field on the surface, E(x), to the field intensity of scattering, 1(6).

C.5. Normalization

Now let’s derive the normalization factor A introduced in Eq. (55). Let € be the energy carried by each of the
N incident rays of the plane wave E;. The total incident energy, &;, total reflected energy on the surface, &;,
and the total scattered energy, &, are:

gi = Ne¢ (59)
N/2 N/2
£ = S EP = Y A2B?[R(6: +tan}(R)[] (60)
i=—(N/2—1) i=—(N/2—1)
e = [awi6) = 4 [dmer (61)
Define the reflectivity of the rough surface as:
£ 1 Wz
4 _ 2
R = =N > AIB|R(61 +tan"' ()| (62)
i=—(N/2-1)
Let &€, = £,. We obtain:
N/2 _ 2
.A _ 522':7(1\1/271) A? Bi2 |R(91+tan l(h;))| EN'R, giR (63)

JdEE()P T JAEEER T [dIE@EP



ACKNOWLEDGMENTS

This work is supported by NASA Grant NAG8-1607.

N =

REFERENCES

. L. Rayleigh, The Theory of Sound, Macmillan, New York, 1877.

. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Pergamon
Press, Oxford, England, 1963.

J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces, IOP Publishing, Bristol, UK, 1991.
L. P. van Speybroeck, D. Jerius, R. J. Edgar, T. J. Gaetz, and P. Zhao, “Performance expectation versus
reality,” in Grazing Incidence and Multilayer X-ray Optical Systems, Hoover and Walker, eds., Proc. SPIE
3113, p. 89, 1997.

P. Zhao, L. M. Cohen, and L. P. van Speybroeck, “AXAF HRMA mirror ring focus measurements,” in
Grazing Incidence and Multilayer X-ray Optical Systems, Hoover and Walker, eds., Proc. SPIE 3113, p. 106,
1997.

P. Zhao et al., “AXAF mirror effective area calibration using the C-continuum source and solid state de-
tectors,” in X-Ray Optics, Instruments, and Missions, Hoover and Walker, eds., Proc. SPIE 3444, p. 234,
1998.

P. B. Reid, “Fabrication and predicted performance of the Advanced X-ray Astrophysics Facility mirror
ensemble,” in X-ray and Extreme Ultraviolet Optics, Hoover and Walker, eds., Proc. SPIE 2515, p. 361,
1995.

P. Zhao and L. P. van Speybroeck, “AXAF VETA-I mirror x-ray test results cross check with the HDOS
metrology data,” in X-ray and Eztreme Ultraviolet Optics, Hoover and Walker, eds., Proc. SPIE 2515,
p. 391, 1995.

cf. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of
Scientific Computing, Cambridge University Press, Cambridge, 1993.



