A NICE/NU/CHANDRA VIEW OF WINDS IN GRS 1915+105

JOEY NEILSEN, PABLO ARUMBURU SANCHEZ (VILLANOVA UNIVERSITY)

NEILSEN ET AL. 2018, APJ, 860, L19; ARUMBURU SANCHEZ & NEILSEN, IN PREP
DISK WINDS IN X-RAYS

- Outflows of ionized gas; backlit by accretion disk, so visible as X-ray absorption
- Encode detailed atomic, dynamic information about BH environment
- Can carry vast majority (95%) of infalling matter AWAY from BH (Neilsen et al. 2011; Lee et al. 2002; Neilsen 2013; Neilsen et al. 2016)
- Critical to understand winds if we want to understand BH accretion

NASA/CXC/M. Weiss for Neilsen et al. 2011

Neilsen & Homan 2012
GRS 1915+105

- 12.4 M_\odot rapidly spinning black hole (McClintock et al. 2006)
- Well-known source of disk winds (Lee et al. 2002; Miller et al. 2008; Neilsen & Lee 2009; Ueda et al. 2009)
- Famous relativistic jet ejections (Mirabel et al. 1994; Fender et al. 1999)
- Perhaps best known for its bizarre X-ray lightcurves (Greiner+ 1996; Belloni+ 00)
- 14 classes (“states”) of high-amplitude, structured variability, spectral changes
BLACK SHEEP OR ROSETTA STONE?

- Hint: Rosetta Stone!

- Extreme behavior is an opportunity to study the broad range of black hole behavior*

- GRS 1915 has history of driving advances in our understanding of accretion and ejection physics (Fender & Belloni 2004)

Spectrally hard states (more hard/ionizing X-rays) show weak iron absorption, strong iron emission; also JETS!

Spectrally soft states (fewer hard/ionizing X-rays) show strong iron absorption, weaker iron emission; WIND!

Fe XXVI Lyα

Neilsen & Lee 2009
BLACK SHEEP OR ROSETTA STONE?

- As stellar mass black holes evolve in outburst ("q diagram"), show a similar trend to GRS 1915+105:

 - Winds preferentially detected during softer states, jets in harder states (Ponti et al. 2012; Homan, Neilsen et al. 2016)
WHAT DON’T WE KNOW (YET)?

▸ How exactly do winds vary from state to state and across states?

▸ How do winds depend on physics @ the event horizon?

▸ Datasets capable of detecting and studying winds are relatively few, need more comprehensive statistics.
Highly sensitive spectroscopy, fast timing capabilities, flexible scheduling for frequent monitoring (PI: Gendreau)

Perfect for studying GRS 1915+105!

Dozens of observations during Performance Verification phase

Spectral analysis to study wind variations across 39 observations, ~5 months

Neilsen et al. 2018
NICER & GRS 1915+105

- Left: (top) lightcurve, (bottom) spectral hardness = (6-12 keV) / (2-4 keV), proxy for spectral slope or avg. photon energy
- Right: spectrum with best fit (absorbed, scattered disk+wind); residuals show 7 keV absorption = Fe XXVI Lyα
- Very likely arising in the same sort of disk winds seen many times before (Neilsen et al. 2011, 2012a; 2009; Miller et al. 2016; Zoghbi et al. 2016)
TRENDS?

- How does wind absorption vary with behavior of the BH?
- Line Flux (top) and Equivalent Width (bottom) vs:
 - Left: Count rate (intensity)
 - Middle: Hardness ratio (spectral shape)
 - Right: Fractional RMS variability
RMS VARIABILITY

- Wind absorption is weaker when GRS 1915+105 is more variable ($r=-0.71$)
- Why does variability make lines look weaker?
- Expected if wind toggles on and off with variability!
- Seen before by Neilsen et al. 2012a
HOW DOES IT WORK?

- Consider lightcurve at left
- Suppose: changes that produce dips also turn off wind
- Spectra at high, low fluxes might look like those on right (from Neilsen et al. 2012a)
- Averaging over entire obs mixes strong wind lines with weak lines; more variability = weaker lines!
A NEW CASE STUDY

- *NuSTAR, Chandra, NICER* observations of GRS 1915+105 (PI: Neilsen, Canizares, Gendreau)

- *NuSTAR* analysis performed by Pablo Arumburu Sanchez, Villanova sophomore

![Graph showing data](image-url)
A NEW CASE STUDY

- Very good agreement between NuSTAR, Chandra

- NICER data (not shown) brackets other observations, shows similar variability

- Rapid on/off variability, typical timescale of a few hundred seconds
Average Spectrum

- Joint fit to time-averaged NuSTAR, Chandra, NICER data; variable norms
- Broadband continuum still needs improvement but 5-10 keV shows clear absorption lines in all data
- All missions fit with a single average line flux: \((2.6\pm/-0.3)\times1\text{e-3 ph/s/cm}^2\)
- Possible Fe He/Ly\(\beta\) lines, Ni too?

Arumburu Sanchez & Neilsen, in prep
TIME-DEPENDENT SPECTRA

- Pablo extracted *NuSTAR* spectra corresponding to high flux, low flux intervals
- Modeled as a sum of eqpair, ezdiskbb, and Gaussian absorption, with ISM absorption
- Continuum: varies primarily due to changing disk luminosity
- See: radiation pressure instability (Nayakshin+ 00, Neilsen+ 11, 12abc)
TIME-DEPENDENT WIND?

- Iron absorption line present in both flux states
- $E \approx 7.04 \pm 0.02$ keV, consistent with disk wind
- Absorbed line flux is higher during high flux state
 - Confirms dilution in avg spectrum
- Equivalent width is a bit lower
 - For fast variability: tricky to track wind lags (Neilsen+ 11; Zoghbi+ '16)

Arumburu Sanchez & Neilsen, in prep
MORE TO DO!

- Actually have several observations with *Chandra, NuSTAR*
- Observations cover several different variability classes, including some steady states and some rapid bright flares
- Great opportunity for studying winds, variability, and relativistic reflection
SUMMARY

- With a relatively large new dataset, NICER makes a substantial contribution to wind studies in GRS 1915+105
- Evidence of a wind that persists over months but can flip on and off on timescales of seconds
- NICER results confirmed by detailed follow-up and joint observations with Chandra, NuSTAR
- GRS 1915+105 continues to provide new insights, future looking good!
COUNT RATE

- Lines look stronger when source is brighter \(r=0.83\)
- Consistent with a [very] roughly constant wind column density over 5 months: a very persistent wind!
- Caveat: are these lines saturated? Optically thick absorber could possibly mimic this effect
SPECTRAL HARDNESS

- Lines get relatively weaker when spectrum is harder ($r = -0.71$)
- Could indicate (Neilsen & Homan 2012)
 - (a) more photoionization when harder
 - (b) physical links between outflow, spectral state
- Tracks with the global state dependence of winds around black holes (Ponti et al. 2012; Homan, Neilsen et al. 2016)