Accretion in Neon-Rich UCXBs: The Peculiar Case of 4U 1626-67

Paul Hemphill
Norbert Schulz, Herman Marshall, Deepto Chakrabarty
MIT Kavli Institute for Astrophysics and Space Research

Accretion In Stellar Systems: Chandra Workshop 2018
7 August 2018
Outline

- Introduction: A brief history of 4U 1626-67
- This work: *Chandra* spectroscopy of 4U 1626-67
 - Emission lines!
 - Plasma modeling!
- Conclusions and discussion: some musings on the nature of the donor star
Ultracompact X-ray binaries: the basics

UCXBs are X-ray binaries with neutron star accretors and orbital periods less than an hour (or thereabouts)

(compare: Am CVn systems, ultracompact CVs with white dwarf accretors)

All are hydrogen-depleted, many appear C/O rich, some are Ne-rich as well

About a dozen known sources (maybe more since I last checked)
4U 1626-67: A unique UCXB

- Only UCXB to host a strongly-magnetized X-ray pulsar
- Orbital period: 42 minutes
- Hydrogen/helium-depleted companion

Very strong neon and oxygen lines

Cyclotron line in hard X-rays: 5e12 G magnetic field

Chandra/LETGS spectra

Pottschmidt et al. (2018)
Asca spectra (Angelini+ 1995): line complex around 1 keV. Chandra HETGS resolves into broad, double-peaked Ne IX-X, O VII-VIII.
Ne/O line profiles

Ne X and O VIII have same velocity width, similar profiles.

From diskline fits to lines:
- \(R_{\text{in}} \sim 1700 \text{ GM/c}^2 \sim 3.5 \times 10^8 \text{ cm} \)
- \(i \sim 38 \text{ degrees} \)

Compare:
- \(R_{\text{co}} \sim 3000 \text{ GM/c}^2 \)
- \(i < 33^\circ \) from, e.g., Chakrabarty 1998, Schulz+ 2001
- \(R_{\text{in}} < R_{\text{co}} \) consistent with pulse period spin-up
Plasma diagnostics: He-like triplets

If we model the He-like lines as disk lines, the resonance line is dominant.

Compare: Schulz+ (2001), who found $r < i$ during spin-down epoch.

Can’t constrain i or f lines very well generally: Ne R-ratio is 1.0 ± 0.7, oxygen is unconstrained.

However, UV continuum probably makes this dubious in any case.

G-ratio + He-like/H-like ratio combined are consistent with high (~10 MK) plasma temperatures.
Spectral fitting

Disk-blurred collisional plasma (rdblur convolved with APEC plasma model), only C/O/Ne/Mg/Fe

Best fit: two-temperature plasma: \(~13\) MK and \(~2.5\) MK

But: need \(~3.5\times\) higher Ne abundance to produce enough Ne emission

Similarly, can place limits on Mg, Fe: less than \(0.2\times\) solar Mg abundance, \(~0.07\) Fe (although Fe might be suspect – no LETGS coverage of, e.g., Fe XXV)
Summary of *Chandra* spectroscopy results

- Clear double-peaked Ne IX-X, O VII-VIII features
- Line profiles support *inclination of ~38°* and an *inner disk radius of ~1700 R_G*
- Spectrum well-fit by *two-temperature collisional plasma* plus PL+BB continuum
- Plasma is *highly neon-enriched*, deficient in Mg, Fe.

Interesting note: both temperature components find same inner+outer disk radius. Azimuthal temperature distribution? Non-equilibrium plasma?
On the nature of the donor star
Possible donor stars

Lots of previous work (e.g., Levine+ 1988, Chakrabarty 1998, Nelemans+ 2010, Heinke+ 2013). Possibilities are helium star or white dwarf, both very low-mass.

Now, from this work:

- High(er) inclination than previous estimates
- Highly enhanced Ne abundance
- Very low Mg upper limit
Binary parameters

No eclipses, so source can’t be highly inclined.

Must fill Roche lobe, otherwise we don’t get enough accretion.

Levine+ (1988): \(\text{asini} < 8 \text{ lt-ms} \)

Inclination: our results are incompatible with inclinations < 28°.
Binary parameters

No eclipses, so source can’t be highly inclined.

Must fill Roche lobe, otherwise we don’t get enough accretion.

Levine+ (1988): $a \sin i < 8 \text{ lt-ms}$

Inclination: our results are incompatible with inclinations $< 28^\circ$.

Donor mass must be < 0.02 solar masses
Chemical composition!

“Abundance” is a tricky term - we don't have any hydrogen!

So we measure everything relative to oxygen (because it’s convenient), e.g.,

\[
\frac{n_{\text{Ne}}}{n_O} = \frac{\text{Abund}(\text{Ne})}{\text{Abund}(\text{O})} \left(\frac{n_{\text{Ne}}}{n_H}\right)_{\text{ISM}} \left(\frac{n_O}{n_H}\right)^{-1}_{\text{ISM}}
\]

Results:

- Ne is 60% of oxygen number density (cf. ~17% in ISM)
- Mg limited to <1% (~5% in ISM)
- Fe is around 0.4% (~5% in ISM) (but LETGS not great for Fe XXV-XXVI)
On helium stars...

- Nelemans et al. (2010): possible to get right donor mass, right orbital period, and lose all helium
- Heinke+ (2013): prefer He star due to 1626’s long-term flux – He star can deliver higher accretion rate

- However: **Ne is enhanced, but only to ~percent levels.** We see ~30% neon!
- Also: accretion rate still an order of magnitude too low (but WD have this same problem)
On white dwarfs...

If it's a WD, what composition? O/Ne is tempting...

Isern et al. (1991), on C/O white dwarfs:

“^{22}Ne can settle down at the center as an outcome of solidification.”

Segretain et al. (1994, right): Ne abundance at core can increase by factor of ~10!

Similar effect for Mg in O/Ne WD?

Fig. 4 from Segretain et al. (1994)
On white dwarfs...

Our numbers:

- Neon: 60% relative to oxygen by number
- Magnesium: <1% relative to oxygen

Companion mass is ~0.02 M_\odot - stripped down to its core.

If C/O, should see enhanced Ne.

If O/Ne, should (?) see enhanced Mg.

Fig. 4 from Segretain et al. (1994)
Ok, if it's a C/O white dwarf, where's the carbon?
Ok, if it’s a C/O white dwarf, where’s the carbon?

We don’t see carbon lines (carbon is maybe seen in UV...). But at 2.5 and 13 MK, we don’t expect to see very much (we would expect Mg, though!):
Remaining questions

- Possibly still **too much neon** even for crystallized C/O WD.
 - Anomalously high Ne abundance to start?
 - Binary evolution screwing with things?
- Timescales! Crystallization is a ~10 Gyr process - can a NS retain a strong magnetic field for long enough?
- Alternately: young O/Ne – not enough time for Mg to sink.

Yungelson et al. (2002) suggested **accretion-induced collapse** formed the NS. This would explain why we see a young pulsar (high B-field, slow pulse period)
Conclusions

- Double-peaked lines and line ratios support a collisionally-ionized, two-temperature, disk-blurred plasma as the origin of the lines.

- Inner radius from lines implies that emission comes from innermost edge of disk.

- Inclination constrained to >28°, incompatible with higher-mass donors.

- Highly abundant neon: O/Ne, or crystallized C/O WD.

- White dwarf donor *moderately* preferred over helium star – but questions remain!
Spare parts
4U 1626-67: Pulse period and flux history (Camero-Arranz et al. 2010, 2012)
Ne X (left) and O VIII (right) pre-reversal (2000, blue) and post-reversal (2010, red)
Photoionized plasma

Schulz et al., in prep.
Comparison: abundances and temperatures
4U 1626-67: Phase-resolved APEC fits
Caveats...

- **APED model overproduces Ne X Kβ!**
 Data shows no Kβ at all.
 - Need some way to produce extra Kα or suppress Kβ...
- **Both APED and diskline fits fail to replicate red shoulder of Ne X line**
- **Unidentified feature around 16.8 Å (Cs edges in the LETGS?)**
- **AtomDB/APED issues...**
 - **APED assumes H/He plasma** in defining VEM
 - VEM, abundances thus difficult to interpret
Torque reversals

Torque reversal in 2008 came with an increase in flux and a change in spectral parameters:

PL got softer - photon index changed from ~0.8 to ~1.0

BB got hotter (from ~0.25 keV to 0.5 keV) and **smaller** ($R^2/D_{10} \rightarrow 100$)

Chandra-HETGS spectra