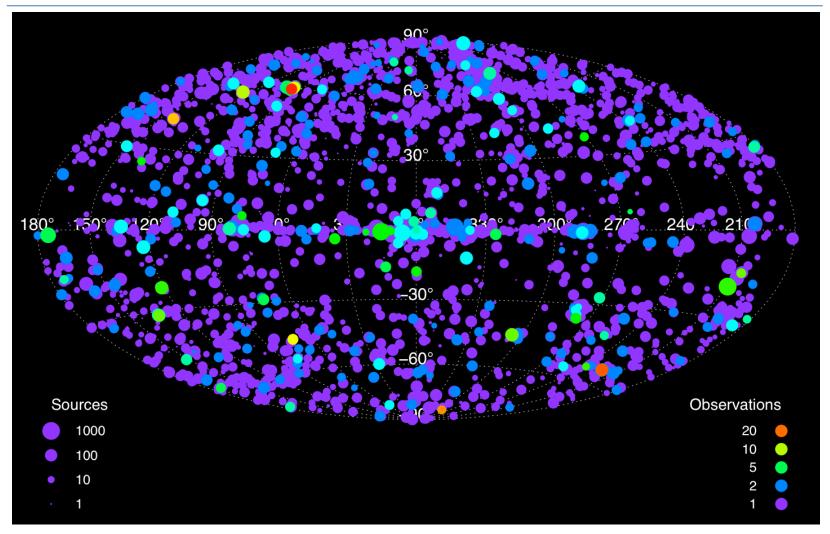


Progress Report

Ian Evans (CXCDS)
On behalf of the Chandra Source Catalog Project Team

Chandra Users' Committee Meeting April 6, 2009

Executive Summary


Summary

- Released version 1 of the Chandra Source Catalog on March 4, 2009
 - This release of the catalog includes
 94,676 master Chandra sources (unique sources on the sky)
 135,914 individual source observations (detected-source regions)
 3,921 observation intervals
- Release includes point and compact sources detected in a subset of ACIS imaging observations released publicly prior to 2009
 - Only sources with observed spatial extents <~30 arcseconds are included
 - Observations with highly extended sources are either excluded, or a subset of the active CCDs are included if the extended source is restricted to a single chip
 - Multiple observations of the same field are not co-added prior to source detection
 - Future catalog releases will relax these restrictions
- The release includes an extensive statistical characterization of the derived source properties included in the catalog

Chandra Source Catalog Observations

- The locations of observations included in the CSC, in Galactic coordinates
 - The size of each symbol is proportional to the logarithm of the number of sources detected in the field, while the color encodes the number of closely-located observations

Science Highlights Since Last CUC Meeting

- Completed catalog production and release 1, including statistical characterization release 1 liens
- Updated public web site with latest user documentation and threads
 - http://cxc.cfa.harvard.edu/csc/
- Documents and publications delivered
 - "Chandra Source Catalog Requirements version 1.0"
 - "Statistical Characterization of the Chandra Source Catalog, Release 1"
 - Posters presented at the January AAS
 - "The Chandra Source Catalog" I. N. Evans et al.
 - "The Chandra Source Catalog: User Interface" N. R. Bonaventura et al.
 - "The Chandra Source Catalog: Source Properties and Data Products" A. H. Rots et al.
 - "The Chandra Source Catalog: Spectral Properties" S. M. Doe et al.
 - "The Chandra Source Catalog: Statistical Characterization" F. A. Primini et al.
 - "The Chandra Source Catalog: Algorithms" J. C. McDowell et al.
 - "The Chandra Source Catalog: Processing and Infrastructure" J. D. Evans et al.
 - "The Chandra Source Catalog: Automated Source Correlation" R. Hain et al.
 - "The Chandra Source Catalog: X-ray Aperture Photometry" V. L. Kashyap et al.
 - "The Chandra Source Catalog: Background Determination and Source Detection"
 - M. L. McCollough et al.
 - "The Chandra Source Catalog: Source Variability" M. Nowak et al.
 - Catalog paper (Evans et al.) and statistical characterization paper (Primini et al.) currently in advanced stages of preparation

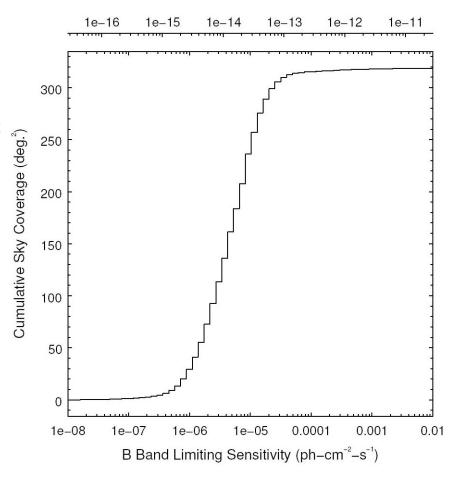
Software Highlights

Software Highlights Since Last CUC Meeting

- CAT 3.0 (Production system) build
 - Minor patches to maintain CSC operations

CAT 3.0.3	Nov 17	ACIS 1-chip filtering / QA update / few bug-fixes
CAT 3.0.4	Dec 04	Master pipeline bug-fix (no science changes)
CAT 3.0.5	Dec 16	Archive server upgrade; added 2008 leap second
CAT 3.0.6	Dec 22	Master pipeline/Repro bug-fix
CAT 3.0.7	Jan 26	Merge Review GUI bug-fix
CAT 3.0.8	Feb 09	Master Pipeline Repro support through Merge Review GUI
CAT 3.0.9	Feb 19	Aper_90 per obi source bug-fix
CAT 3.0.10	Feb 25	Release 1 migration tasks

- CAT 3.1 (Release system) build
 - CSCview bug-fixes and enhancements
- Software team ran catalog pipeline processing operations for release 1 production and statistical characterization simulation runs


Catalog Statistical Characterization

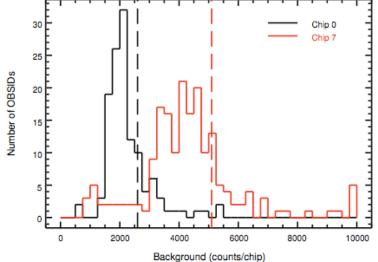
Catalog Statistical Characterization

- Statistical characterization is a scientifically essential component of the CSC
 - Characterization determines statistically how well the science algorithms used in catalog construction actually performed
 - Statistical characterization provides the user with the information to judge whether a particular line of enquiry is feasible using the catalog release data
- Statistical characterization of catalog source properties is accomplished primarily by processing simulated datasets through the catalog pipelines
- Characterization is an ongoing, evolving process
 - The results provided with the catalog release give a good overview of the general catalog properties
 - Some specific questions identified during production or with existing characterization runs have still to be addressed
 - E.g.: source detection efficiency in the vicinity of the bright, crowded cores of galaxies
 - Feedback from users will identify areas where existing characterization should be refined
- Statistical characterization results are published on the catalog web site
 - http://cxc.cfa.harvard.edu/csc/char.html

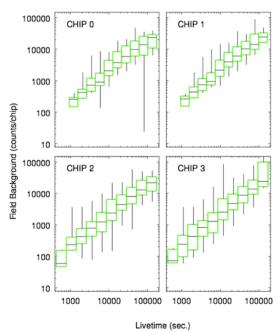
Sky Coverage

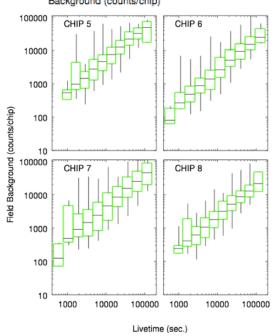
- The sky coverage represents the total area in the CSC sensitive to point sources greater than a given flux, as a function of flux
 - We estimate sky coverage by assigning all non-zero limiting sensitivity map values to all-sky pixels, keeping only the most sensitive value in each all-sky pixel
- Approximate sky coverage
 - $\sim 300 \text{ deg}^2 \text{ at } 2 \times 10^{-5} \text{ photons cm}^{-2} \text{ s}^{-1}$ $(\sim 5 \times 10^{-14} \text{ ergs cm}^{-2} \text{ s}^{-1})$
 - \sim 70 deg² at 2×10⁻⁶ photons cm⁻² s⁻¹ ($\sim 5\times10^{-15}$ ergs cm⁻² s⁻¹)
 - \sim 6 deg² at 4×10⁻⁷ photons cm⁻² s⁻¹ (\sim 1×10⁻¹⁵ ergs cm⁻² s⁻¹)

Total ACIS "b" band sky coverage is ~320 deg²



Catalog Properties: Field Background


CXC

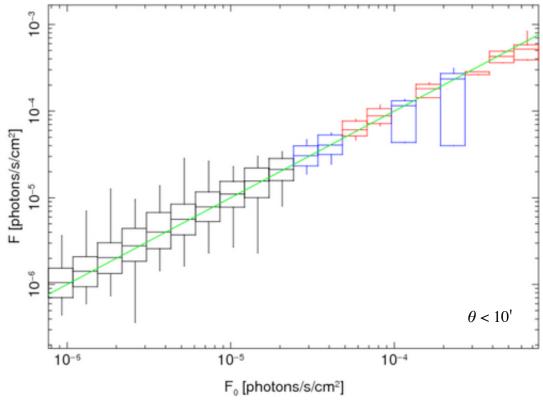

Field Background

- Top panel: distribution of chip 0 and chip 7 ACIS "b" band background estimated from CSC 10 ks event lists with sources removed
 - Dashed vertical lines indicate the values cited in version 11 of the POG
 - Event screening performed in the CSC pipeline processing is more aggressive than that done in standard data processing, so the non-X-ray background is typically reduced

- Bottom panel: field background per chip vs. livetime
 - Median background counts per bin are indicated by horizontal lines
 - Boxes include 95% of the measurements in each bin, and vertical lines indicate extreme values

Source Detection Efficiency

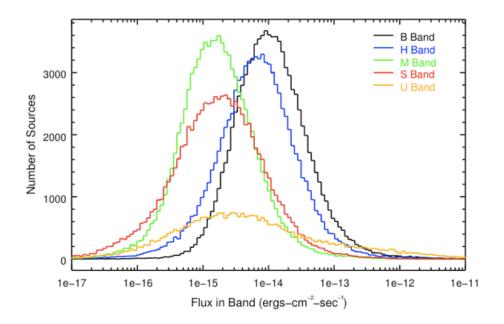
- Estimated from fraction of simulated sources of a given flux actually detected
 - Simulated absorbed ($N_{\rm H} = 3 \times 10^{20} \, {\rm cm}^{-2}$) power-law ($E^{-1.7}$) and blackbody ($kT = 1.0 \, {\rm keV}$) spectra, with a power-law N > S distribution with index 1.5


- High flux end suffers from low number statistics
- Reduced efficiencies for the θ < 15' curves are real and indicate reduced sensitivity at large values of θ because of the increased aperture background

Catalog Properties: Flux Accuracy

Flux Accuracy

- Estimated from comparison of the input and measured fluxes of the simulated source
- Results indicate good agreement for sources within 10' of the aim point
 - For sources beyond 10', there appears to systematic overestimate of a factor of \sim 2 for sources fainter than \sim 3 x 10⁻⁶ photons cm⁻² s⁻¹


- Comparison of input and measured ACIS 'b' band fluxes for sources with power-law spectra
 - Bins in red contain fewer than 100 measurements; bins in blue contain 100–400 measurements; bins in black contain more than 400 measurements

Catalog Properties: Flux Distribution

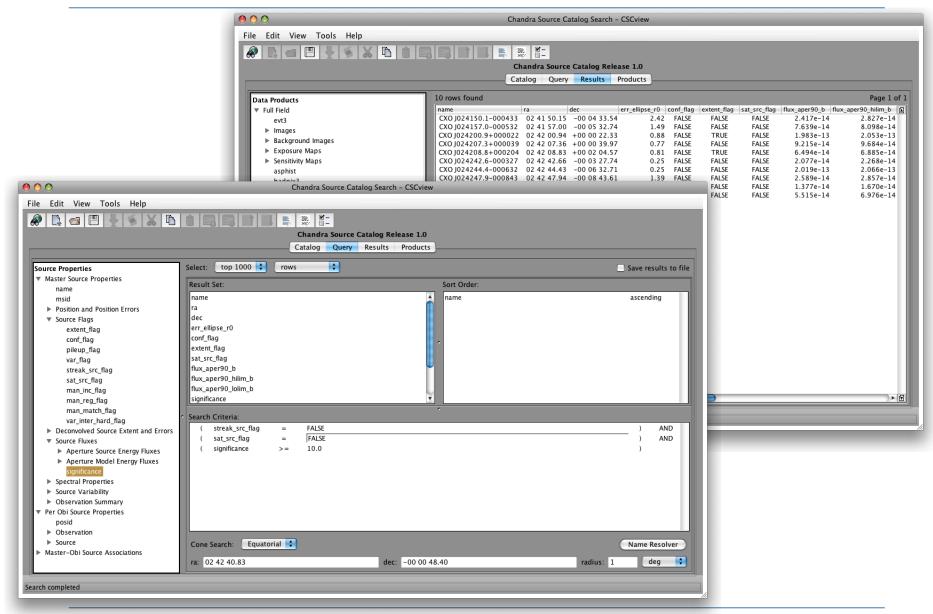
Flux Distribution

• Although CSC fluxes range from below $\sim 10^{-18}$ erg cm⁻² sec⁻¹ (for the deepest exposures) to $\sim 10^{-10}$ erg cm⁻² sec⁻¹, most CSC sources have fluxes of $\sim 10^{-15}$ – 10^{-13} erg cm⁻² sec⁻¹ (ACIS "b" band, or 0.5–7.0 keV)

• Distribution of CSC fluxes in the broad (black), hard (blue), medium (green), soft (red), and ultra-soft (orange) bands, obtained from the catalog master source table flux_aper column

Catalog User Interface Updates

CSCview


- CSCview is the primary user interface to the catalog
 - Available on the web via the catalog user website
 - Java applet runs in the user's web browser (requires Java version 1.5 or later)
- Numerous enhancements since last CUC meeting
 - Improved human interface looks more like a typical application
 - Standardized layout of menus, buttons, forms; standardized icons etc.
 - Supports ADQL VO query language in addition to the form interface
 - Provides access to several "pre-canned" result sets
 - These will be made more visible in a future release
 - Much improved interface for accessing and retrieving file-based data products
 - Improved boolean expression functionality for query form search criteria
 - Improved cone search functionality, including name resolution
 - Provides better extensibility "under the hood"

cURL/wget Interface

Updated to accept ADQL queries

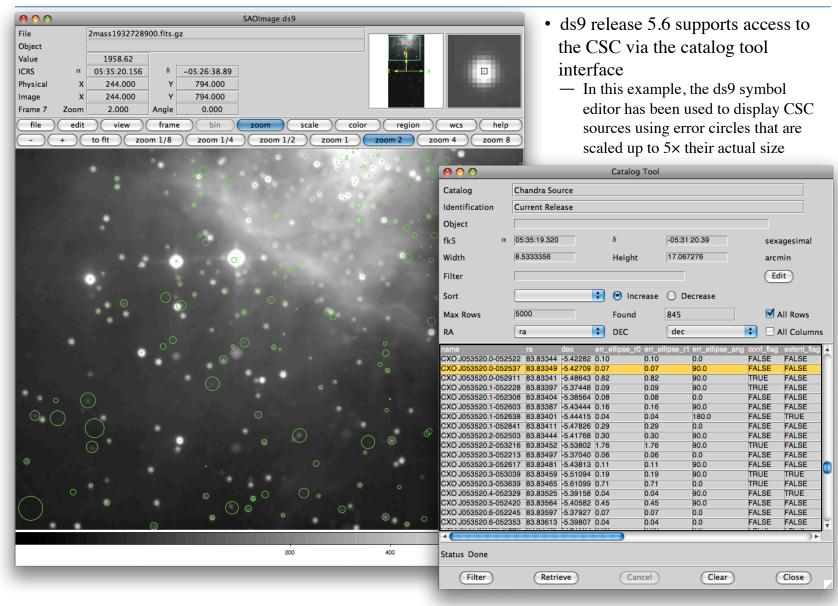
CSCview GUI

Future Directions

Short Term Plans

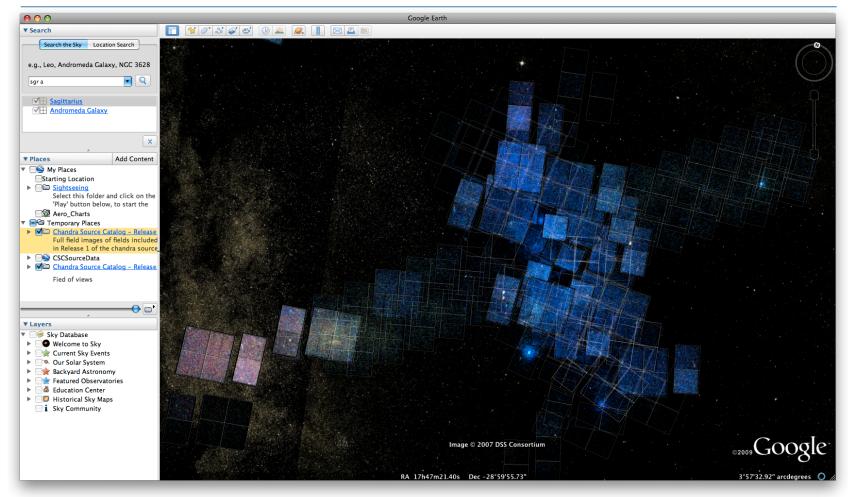
- Catalog Releases
 - Release 1.1 (Fall 2009) extends Release 1 to include public HRC-I imaging observations, and newly public ACIS observations, but otherwise retains the same limitations as Rel. 1
- Public Interfaces
 - CSCview GUI
 - Additional output file formats for query results (VOTable, Vizier TSV)
 - Support for cross-matching with user supplied catalogs
 - SAMP interface
 - Web Services
 - VO cone search service
 - Catalog limiting sensitivity and footprint services
 - CSC SDSS (DR7) cross-match
 - Additional Interfaces
 - Display catalog sources directly in **ds9** version 5.6
 - Google Sky Interface
 - » Catalog visualization for both scientific and education/public outreach users
 - External Interfaces
 - » CSC file dumps currently works with **TOPCAT** ("TST" format)
 - » In discussions with Vizier to host catalog tables
- CIAO tools
 - A number of the catalog-related tools will be made available to users in CIAO 4.1.2/4.2
 - Details discussed in SDS CIAO presentation

Future Directions

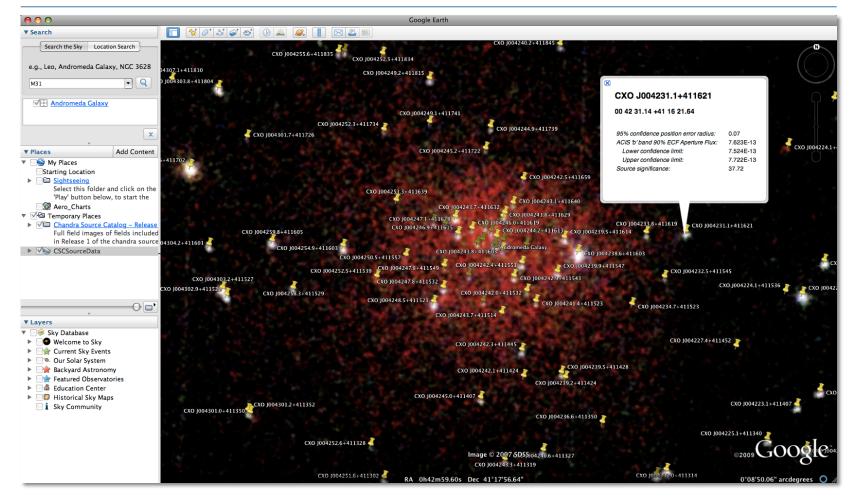

Longer Term Plans

- Catalog releases
 - Catalog Release 2 (late 2010)
 - Co-add multiple observations of the same field that use the same instrument prior to source detection to achieve fainter limiting sensitivities
 - Improve background modeling, particularly in areas of extended emission
 - Improve aperture photometry in crowded fields
 - Improve extended source handling
 - Future Releases
 - Simultaneous source detection across overlapping observations with different detectors and pointings (and thus very different local PSFs)
 - Detection and classification of very extended sources
- Detailed plans for Release 2 and later are not fully established
 - Items identified above for Release 2 will have significant impact on the depth and quality of the catalog
 - Plan is to seek community feedback for guiding further development
 - Want input from a broad audience that includes the general multi-wavelength community and well as experienced Chandra users
 - Catalog needs several month soak period in the community for useful feedback from a wider audience
 - Consider establishing community working groups with focus on specific areas of complexity (such as robust extended source detection) if there is sufficient interest

ds9 Release 5.6 Interface



Google Sky Interface



- Currently testing an experimental Google Sky interface for visualizing the CSC contents
 - Platform independent interface provides quick visualization of catalog contents for scientists
 - Simple to build and easily extensible; could be readily adapted for education and public outreach uses
 - Panel displays the catalog coverage in the vicinity of the Galactic Center, with observation FoVs displayed (optional)
 - Fields are blue because the observations were obtained using ACIS with an E > 1.0 keV energy filter

Google Sky Interface (cont.)

- Summary source data can be added to the displayed catalog observation images
 - In this case, push pins locate and name CSC master sources in the core of M31, with associated simple source summary pop-ups, but graphical source regions and more sophisticated associated data can easily be added