Progress Report

Ian Evans
On behalf of the Chandra Source Catalog Project Team

Chandra Users’ Committee Meeting
October 22, 2013
Summary

- Current catalog version: 1.1; Released: 2010 Aug 10
 - 106,586 master sources
 - Includes 104,628 ACIS-only, 1,034 HRC-only, 924 both ACIS and HRC
 - 158,071 source detections
 - Includes 152,296 ACIS, 5,775 HRC
 - 5,110 observations with at least one detected source

Usage Statistics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>% Non-CfA</td>
</tr>
<tr>
<td>CSCview catalog browser initializations</td>
<td>379 /month</td>
<td>85%</td>
</tr>
<tr>
<td>Command-line (CLI) searches</td>
<td>728 /month</td>
<td>4%</td>
</tr>
<tr>
<td>VO cone searches</td>
<td>9441 /month</td>
<td>79%</td>
</tr>
<tr>
<td>CSC Sky in Google Earth</td>
<td>412 visits/ month</td>
<td></td>
</tr>
</tbody>
</table>

*Excludes ~75K (~100% non-CfA) searches in Sep. 2013
CSCview

- Updated version of CSCview supports Java 7 (aka Java 1.7)
- Now available as a downloadable application for Mac
 - Avoids OS X limitations on Java applet execution in browser

Command Line Tools

- New tools distributed as part of the contrib package support the most common queries using a CIAO syntax interface
 - `search_csc` performs position-based queries
 - `obsid_search_csc` performs ObsId-based queries

Documentation

- Updated existing threads and added a new science thread “Investigating Colors of Variable Galactic Sources”
Release 2 Summary

<table>
<thead>
<tr>
<th>Expected Number of Distinct Sources on the Sky</th>
<th>~ 280,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Number of Source Detections</td>
<td>~ 380,000</td>
</tr>
<tr>
<td>Expected Number of Observations</td>
<td>~ 7,000</td>
</tr>
<tr>
<td>Expected Limiting Net Source Counts (point source, on-axis)</td>
<td>~ 5</td>
</tr>
<tr>
<td>Instrument Data Included</td>
<td>ACIS and HRC-I Imaging</td>
</tr>
<tr>
<td>Source Detection Runs On</td>
<td>Stacks of observations with the same instrument, and pointings within 60 (TBR) arcsec</td>
</tr>
<tr>
<td>Source Types Included</td>
<td>Point and compact sources in regions without extended emission</td>
</tr>
<tr>
<td></td>
<td>Regions of extended emission delineated by convex hulls</td>
</tr>
<tr>
<td></td>
<td>Convex hull thresholds TBD</td>
</tr>
<tr>
<td></td>
<td>Point sources within extended emission convex hulls</td>
</tr>
<tr>
<td></td>
<td>Detection sensitivity may be reduced in these regions</td>
</tr>
</tbody>
</table>
Science Highlights

Science Highlights Since Last CUC Meeting

• Developed prototype algorithms and specifications for release 2.0
 – Aperture photometry specifications for individual- and combined-observation analysis
 – Limiting sensitivity specification
 – Extended (convex hull) source likelihood specification
 – Scargle Bayesian Blocks specifications for partitioning stacks into groups of observations for combined analysis

• Updated mkvtbkg background and extended source detection tool
 – Include ACIS readout streaks in the background
 – Smooth the (non-streak) background with a Gaussian whose σ depends on θ

• Supported pipeline development and testing
 – Evaluated numerous pipeline test runs and provided feedback to software team
Software Highlights

Software Highlights Since Last CUC Meeting

• Continuing development of release 2.0 pipelines and tools
 – Updated mle to add estimation of confidence limits on all parameters
 – Integrated mkvtbkg backgrounds and added convex hull detection
 – Added limiting sensitivity pre-population
 – Added cratered source (ACIS pile-up) detection
 – Added quality assurance processing for all pipelines through “stacker”
 – Implemented data archiving for all pipelines through “stacker”
 – Added support for HRC-I observations
 – Working later-stage tools as specs become available

• Supported extensive science testing of initial implementation through “stacker” pipeline with actual and simulated data
 – Identified and resolved or worked around unexpected issues as necessary
Test Data

- Extensive pre-production testing has been primarily based on a set of ~20 observation stacks, selected to validate pipeline performance
 - Test stacks are chosen to exercise specific capabilities, ensure that pipeline processing is robust, and can handle all expected input data
 - Tests have identified many unexpected issues when processing some data

PSR B1929+10
00160 acisfJ1932139p105929_001 06657_000,07230_000
SN 1993J
00190 acisfJ0955229p690132_001 00735_001,09122_000,12301_000
Orion (streak in same direction)
00512 acisfJ0535130m052259_002 03498_000,03744_000,04373_000,04374_000,04395_000,04396_000
0 degree RA overlap
00600 acisfJ0000082p135624_001 11490_000
360 degree RA overlap
00610 acisfJ2359567p004249_001 11591_000
Polaris, high declination
00620 acisfJ0224387p891406_001 06431_001
Subarray, zero sources?
00630 acisfJ0348574p125529_001 02158_000
Extended source on various detector edges
00640 acisfJ0412549p102027_001 06929_000,07217_000,07218_000,07222_000,07234_000,07235_000
Extended source
00650 acisfJ0602180m395930_001 03202_002,03450_002
Faint, few sources
00660 acisfJ1120056p570223_001 06960_000
Deep extended emission w/ point sources
00670 acisfJ1259510p275430_001 13993_000,14410_000
Test Data (cont.)

1.0 keV low energy ACIS event threshold
000680 acisfJ1742590m293012_001 02283_000
Sgr A* stress test, 02943, 02953, 05954 interrupted by SCS107
000690 acisfJ1745400m290026_001 02943_000,02951_000,02952_001,02953_001,02954_000,03392_001, 03393_000,03549_000,03663_000,03665_000,04683_000,04684_000,05360_000,05950_000,05951_001, 05952_001,05953_001,05954_000,06113_000,06363_000,06639_000,06640_000,06641_000,06642_000, 06643_001,06644_000,06645_000,06646_001,07554_001,07555_000,07556_000,07557_000,07558_000, 07559_000,09169_000,09170_000,09171_001,09172_001,09173_000,09174_000,10556_000,11843_000, 13016_000,13017_000
M17
000700 acisfJ1820296m161055_001 00972_002,06403_001,06420_000,06421_000,08460_000,08461_000
M31
000710 hrcfJ0042403p405201_001 00260_000,00261_000,00263_000,00264_000,00265_000,00266_000
M31
000720 acisfJ0042432p411635_001 00310_000,00312_000,04360_000
NGC 1068
000730 hrcfJ0242412m000034_001 12705_000
NGC 1068
000740 acisfJ0242410m000123_001 00344_000
NGC 2903
000750 acisfJ0932079p212854_001 11260_000
Large Y-offset (is the local PSF computed correctly?)
000760 hrcfJ1033161p534103_001 01400_000
Few sources
000770 hrcfJ1744519m283909_001 06194_000,06195_000,08533_000,09032_001,09038_000
Central source; 08547 contains an instrumental feature that is removed in L2 and should be
removed in L3 also
000780 hrcfJ1520426m571003_001 08547_000,08556_000
Core of M31, StackId acisfJ0042432p411635_001 (white light), Rel. 1 ‘b’ band sources shown with cyan squares, Rel. 2 sources shown with green circles, marginal sources shown with yellow circles, Kong et al. (2002) M31 Chandra point source catalog sources shown with magenta diamonds
NGC 1068, StackId acisfJ0242410m000123_001 (white light), Rel. 1 ‘b’ band sources shown with cyan squares, Rel. 2 sources shown with green circles, marginal sources shown with yellow circles; note the dramatic increase in source detections on the CCD that contains the galaxy.
• Simulation of two point sources separated by 0.75″ at $\theta \sim 0.5'$, with true intensities of S1 = 100 and S2 = 30 net counts
• The 90% PSF ECF region is shown for each source
• Counts in the overlap region may be assigned to either source but not both
 – In Rel. 1, counts in the overlap region were excluded from both the source and background apertures (cases S1 ONLY and S2 ONLY)
 – In Rel. 2, sources are analyzed as a bundle and counts in the overlap region are assigned to either S1 or S2 but not both (cases S1 or S2)
• Distributions of fractional error [i.e., \((\text{mode} - \text{true value}) / \text{true value}\)] and fractional width [i.e., \((\text{upper conf. limit} - \text{lower conf. limit}) / \text{true value}\)] for two point sources separated by 0.75″ at \(\theta \sim 0.5′\) with true intensities of \(S_1 = 100\) and \(S_2 = 30\) net counts, computed from 10000 simulations each.
• Distributions favor assigning counts to aperture of brighter source in this case.
• New algorithm recovers true source counts more accurately than Rel. 1 approach for close source bundles.
Comparison of Rel. 2 single-ObI source fit amplitudes computed by mle with photon fluxes computed by prototype aperture photometry code (naprates) for point sources with ‘b’ band likelihood > 50 in M31, StackId acisfJ0042432p411635_001
Operations plan

• Take advantage of multi-step architecture to process in distinct phases while subsequent pipeline steps are being developed / tested
 – Each phase needs completed science review and sign-off prior to start
 – Each phase must be completed and verified before the next phase can start

• Phase 1: run through stacker pipeline
 – Creates all per-ObsId-stack source detections

• Phase 2: run master_match pipeline
 – Merges source detections from multiple overlapping ObsId-stacks
 – Assigns source names
 – After master_match runs, a definitive source list is available

• Phase 3: run source and master pipelines
 – Generates properties for each source detection
 – Merges properties for each unique source on the sky

• Phase 4: perform final (human review) QA
Pipelines Already Developed

- **precaldet** pipelines (acis, hrc) — *Operations Phase 1*
 - Performs preliminary calibration and source detection for each observation
 - Pipeline complete

- **fine_astrometry** pipeline — *Operations Phase 1*
 - Computes astrometric corrections to align stacked observations accurately
 - Pipeline complete

- **cal** pipelines (acis, hrc) — *Operations Phase 1*
 - Calibrates observations, removes background flares, computes backgrounds
 - Pipeline complete

- **combodet** pipeline — *Operations Phase 1*
 - Stacks observations, pre-populates limiting sensitivity, performs candidate source detection (*wavedetect*, *mkvtbkg* compact and convex hull sources) in each energy band, filters and merges results
 - Pipeline complete; investigating *mkvtbkg* performance and addressing issues

- **sourcevalidation** pipeline — *Operations Phase 1*
 - Computes convex hull source likelihoods, selects candidate compact source detections to pass to *mle*, creates candidate source bundles
 - Pipeline complete
Pipelines Already Developed (cont.)

- **mle** pipeline — *Operations Phase 1*
 - Creates source region data products (images, exposure maps, backgrounds, etc.), generates local PSF (SAOTrace/MARX), runs mle on source bundle
 - Pipeline complete; investigating mle performance and addressing issues

- **stacker** pipeline — *Operations Phase 1*
 - Combines output from set of mle pipelines (one per bundle) to produce a single merged source list for observation stack
 - Pipeline complete
Pipelines Still To Be Developed

• *master_match* pipeline — *Operations Phase 2*
 - Merges source detections from overlapping stacks
 - Source matching based on existing code from Rel. 1 *master* pipeline
 - New functionality to compute corresponding source regions in stacks
 where a source is not detected to extract photometric upper limits

• *source* pipeline — *Operations Phase 3*
 - Computes source properties from each observation and from stack
 - Bayesian aperture photometry algorithm (*naprates*)
 » Science prototype and spec in hand
 - Bayesian Blocks algorithm partitions stacks of observations into groups for combined analysis
 » Science prototype and spec in hand
 - Hardness ratios computed from aperture photometry PDFs
 » Straightforward, but *spec not yet in hand*
 - Spectral model fluxes and spectral fits
 » Similar to Rel. 1, with additional source model added
 - Temporal variability analysis
 » Similar to Rel. 1, but based on aperture photometry PDFs
 - Source extent — no longer required (extracted from *m1e* fits)
Pipelines Still To Be Developed (cont.)

- *master* pipeline — *Operations Phase 3*
 - Similar to merge processing from Rel. 1 *master* pipeline
 - *Mostly* uses components from the *source* pipeline, with groups redefined

Quality Assurance

- All pipelines are followed by appropriate automated QA processing
 - Pipelines thru *stacker*: *being developed*
 - Pipelines post-*stacker*: *specs not yet in hand*

- Manual QA processing can be invoked after *fine_astrometry, combodet, stacker*, and *master_match* pipelines as required
Schedule Impacts

- Catalog pipeline development has been impacted by many issues
 - Competition for limited resources
 - Mission support takes priority (same personnel)
 » (e.g.,) Linux migration; peer review support; archive operations
 - Recent loss of key science/software staff will impact schedule going forward
 - Numerous unexpected issues with background determination, source detection, and source fitting that require investigation and resolution
 - In some cases they are due to bugs, but in many cases they are caused by undocumented limitations in existing software (both internal and external)
 - Bug-fixes have been/will be included in CIAO 4.5 or CIAO 4.6
 - Issues and workarounds have been/will be documented on CIAO website where appropriate
- Science algorithm development takes longer than expected
 - Some algorithms require fundamental research and extensive prototyping
 - Supporting current catalog pipeline development and testing often takes priority
- Catalog processing hardware performance is less than expected
 - Increases turnaround time for testing
 - Will impact production time
Catalog Software Releases

Catalog-Related Releases

- Software release associated with CSC Rel. 1

<table>
<thead>
<tr>
<th>Release</th>
<th>Date</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT 3.2.7.2</td>
<td>5 Mar</td>
<td>CSCview updates for Java 7; packaged as OS X app</td>
</tr>
<tr>
<td>CAT 3.2.7.2</td>
<td>19 Jun</td>
<td>VO interfaces update; CSCview package update</td>
</tr>
</tbody>
</table>

- Software release associated with CSC Rel. 2

<table>
<thead>
<tr>
<th>Release</th>
<th>Date</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT 4.1.1</td>
<td>13 Sep</td>
<td>Refinements to PLs (add/validate HRC); archive ingest thru stacker; pass basic test — list of 20 observation stacks</td>
</tr>
<tr>
<td>CAT 4.1.2</td>
<td>~End Nov</td>
<td>Additions to PLs (tune algorithm params, crater detection, add ultrasoft band); 2nd tier mle updates; data product refinements</td>
</tr>
<tr>
<td>CAT 4.2</td>
<td>Spring 2014</td>
<td>QA thru stacker; reprocessing support; interleave-mode; performance tuning; pass big test — fraction of archive</td>
</tr>
<tr>
<td>CAT 4.3</td>
<td>Fall 2014</td>
<td>master_match and source PLs; limiting sensitivity population</td>
</tr>
<tr>
<td>CAT 5.0</td>
<td>Winter 2014</td>
<td>Production run through stacker pipeline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Production run master_match and source pipelines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Production run master pipeline and final QA review</td>
</tr>
</tbody>
</table>