Identifying (Typical) First X-ray Sources

Anastasia Fialkov, ITC Fellow, Harvard

From Chandra to Lynx August 8, 2017

The Universe after the Big Bang

Image: Loeb, Scientific American 2006

First X-ray Sources

A quasar

Dark matter annihilation

Possible heating sources:

X-ray binaries?

Thermal emission from galaxies?

Black holes, mini quasars?

Dark matter annihilation?

Cosmic rays?

Magnetic fields?

Important Properties of X-ray Sources

- X-ray efficiency (effect of metallicity)
- SED (XRB/quasars vs hot gas)
- Absorption (ISM of the host)
- Growth of population with redshift (XRB vs quasars)

Effects of First X-ray Sources on the Environment

- X-rays can easily escape from their host galaxies
- Heat and ionize IGM 10-1000 Mpc away from the source
- Temperature of the IGM fluctuates (non-homogeneous distribution of X-ray sources)

Fialkov & Barkana (2014)

21-cm Signal: Alternative Probe of X-ray Sources

- 21-cm is a spectral line
- Tomographic scan of the Universe at z>6

Sensitive to X-ray Heating

Fialkov & Barkana (2014)

Signature of X-ray Sources in 21-cm Signal

- Produced at $z \gtrsim 6$
- 3D scan of the neutral IGM
- Effect of X-ray sources at $10 \le z \le 20$

Drivers:

Galaxies

Quasars

XRB

BHs

Hot Gas

SN

First stars

Feedbacks

Velocity flows

Cosmology

Atomic physics

Exotic physics

Large Uncertainty in Astro Parameters

Hirano et al.

(ESO image)

 $\sim 10^4$ different models

Star formation, 2 parameters + feedbacks Heating, 3 parameters

EoR 2 parameters

Fialkov, Cohen, Barkana (in prep)

- Currently very weak observational constraints
- Exact shape and amplitude of the 21-cm signal are unconstrained
- Both detection and non-detection will transform our understanding

Power Spectra

1+zk=0.1 15 35 10 10⁴ ~200 models 10³ 10² $k^3P(k)/2\pi^2~[{\rm mK}^2]$ 10 ¹ 10⁰ 10⁻² 10 ⁻³ Coming out soon! 10 ⁻⁴ 60 90 120 150 180 30

Global 21-cm

Cohen, Fialkov, Barkana (in prep)

Cohen, **Fialkov**, Barkana (submitted)

The Unresolved Soft CXB

Total intensity of the extragalactic CXB attributed to high-z population $< 7 \times 10^{-12} \ [erg \ cm^{-2}s^{-1}deg^{-2}]$ for 0.5-2 keV (Cappelluti et al. 2017)

Unresolved extragalactic CXB yields upper limit on X-ray efficiency $(f_X = 10 - 100)$.

Most Promising Experiments

SKA:

Under construction

Redshifts: 6-28

FoV: 5 deg

Resolution: 1'

Survey volume: TBD

HERA:

Taking Data

Redshifts: 4.7-27.4

FoV: 9deg

Resolution: 25'

Survey volume 150 cGpc³

Constraining Parameters (21-cm only)

Greig & Mesinger 2017 (see also Kern et al. 2017)

Cross-correlation with large-scale X-ray background can improve understanding of large-scale effect of X-rays

Even in cases when the X-ray peak is not evident in 21-cm, cross-correlating with X-rays background can highlight the effect of X-rays

"Proof of Concept" CXB-CIB Cross-Correlation

First detection of the cross-power signal between CIB and CXB on large scales (> 20') at 5σ

- Known populations alone cannot explain the observed signal
- Similar technique will be used for 21-cm & CXB cross-correlation (work is ongoing)

Aspen Meeting

Cosmological Signals from Cosmic Dawn to the Present Feb 4-10, 2018

- Line intensity mapping
- The 21-cm signal from EoR and cosmic dawn
- First UV and X-ray sources
- Physics of reionization and cosmic dawn

Organizers: Anastasia Fialkov, Tzu-Ching Chang, Rennan Barkana, Judd Bowman, Adam Lidz, Anthony Pullen.

Conclusions:

Prospects to constrain the high-z population of X-ray sources(z>6) using 21-cm and CXB crosscorrelation

Work is ongoing

- Better modeling of the cross-power
- Methods to measure the cross power

