

PROBING MASS LOSS IN SUPERNOVA PROGENITORS WITH LYNX

DAN PATNAUDE (SAO)

CIA CENTER FOR ASTROPHYSICS

- when and how massive stars shed their envelopes remains an open question
- observed mass loss rates are generally lower than what is predicted
- many SNe progenitors now show evidence, direct or otherwise, for enhanced mass loss prior to core collapse:
 - shell burning leading to instabilities that eject mass (Smith and Arnett)
 - energy deposited in the envelope from a super-Eddington core (Quartaert and Shiode)

SN	Progenitor Star ^a	$M_{\rm ZAMS}~({ m M}_{\odot})^{ m b}$	$\dot{M} (M_{\odot} \text{ year}^{-1})^{c}$	
II-P	RSG	8–20	$10^{-6} - 10^{-5}$	10
II-L	RSG/YSG	20-30 (?)	$10^{-5} - 10^{-4}$	20 -10
II-pec	BSG (b)	15–25	$10^{-6} - 10^{-4}$	10
IIb	YSG (b)	10-25	$10^{-5} - 10^{-4}$	20-100
Ib	He star (b)	15-25 (?)	$10^{-7} - 10^{-4}$	100-1,000
Ic	He star (b)/WR	25-?	$10^{-7} - 10^{-4}$	1,000
Ic-BL	He star (b)/WR	25-?	$10^{-6} - 10^{-5}$	1,000
IIn (SL)	LBV	30-?	(1–10)	50-600
IIn	LBV/B[e] (b)	25-?	(0.01–1)	50-600
IIn	RSG/YHG	25-40	10 ⁻⁴ -10 ⁻³	30–100
IIn-P	Super-AGB	8–10	0.01–1	10-600
Ibn	WR/LBV	40-?	10 ⁻³ -0.1	1,000
Ia/IIn	WD (b)	5-8 (?)	0.01-1	50-100

Smith (2014; ARA&A)

CENTER FOR ASTROPHYSICS

- when and how massive stars shed their envelopes remains an open question
- observed mass loss rates are generally lower than what is predicted
- many SNe progenitors now show evidence, direct or otherwise, for enhanced mass loss prior to core collapse:
 - SN 2001em, SN 2014C, SN 1996cr ejected their shells ~ 100 - 10⁴ years before core collapase
 - timing of ejection may be related to CC

SN	Progenitor Star ^a	$M_{\rm ZAMS}~({ m M}_{\odot})^{ m b}$	$\dot{M} (M_{\odot} \text{ year}^{-1})^{c}$	
II-P	RSG	8–20	$10^{-6} - 10^{-5}$	10
II-L	RSG/YSG	20-30 (?)	$10^{-5} - 10^{-4}$	20 -10
II-pec	BSG (b)	15-25	10 ⁻⁶ -10 ⁻⁴	10
IIb	YSG (b)	10–25	$10^{-5} - 10^{-4}$	20-100
Ib	He star (b)	15-25 (?)	$10^{-7} - 10^{-4}$	100–1,000
Ic	He star (b)/WR	25-?	$10^{-7} - 10^{-4}$	1,000
Ic-BL	He star (b)/WR	25-?	$10^{-6} - 10^{-5}$	1,000
IIn (SL)	LBV	30-?	(1–10)	50-600
IIn	LBV/B[e] (b)	25-?	(0.01–1)	50-600
IIn	RSG/YHG	25-40	$10^{-4} - 10^{-3}$	30-100
IIn-P	Super-AGB	8–10	0.01-1	10-600
Ibn	WR/LBV	40-?	10 ⁻³ -0.1	1,000
Ia/IIn	WD (b)	5-8 (?)	0.01-1	50-100

Smith (2014; ARA&A)

HARVARD-SMITHSONIAN

CfA

CENTER FOR ASTROPHYSICS

HARVARD-SMITHSONIAN

CENTER FOR ASTROPHYSICS

- in 30-40 years, SNe we observe now with Chandra will probe CSM formed during latter stages of core helium burning
- shock will interact with CSM shells ejected during core carbon burning
- these shock—shell interactions will imprint themselves on the spectra and the effects will be observable for several *e-folding* times
- High throughput spatial and spectral resolution will allow us to probe the mass loss history of massive stars out to D ~ 10 Mpc

Harvard-Smithsonian CENTER FOR ASTROPHYSICS

• Lynx will also probe the mass loss history of progenitors over time:

• Lynx will also probe the mass loss history of progenitors over time:

10⁴ sec Chandra ACIS detection limit (Chandra POG)

• Lynx will also probe the mass loss history of progenitors over time:

10⁴ sec Lynx XRS detection limit (A. Vikhlinin)

CIA CENTER FOR ASTROPHYSICS

PIE IN THE SKY: EXTRAGALACTIC SNR

CIA HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

CIA HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

CONCLUSIONS

- Lynx will probe the mass loss history of SNe:
 - observations performed now with Chandra will sample progenitor evolution ~ 100 - 1000 years before CC
 - followup Lynx observations of ~ 100s of SNe will paint a picture of mass loss at earlier times (currently not well sampled)
- High resolution X-ray spectroscopy can discern mass loss events ~ 10³ 10⁴ years before core collapse
- Lynx will allow for surveys of young and middle-aged SNR out to distances of ~ 10 Mpc
 - probe influence of environment metallicity on SN and progenitor evolution