Observational signatures of selfconsistent 3D CME-flare models

S.P. Moschou¹,

J.J. Drake¹, O. Cohen², J.D. Alvarado-Gomez¹ and C. Garraffo¹

Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge Lowell Center for Space Science and Technology, 600 Suffolk Street, Lowell

Drake et al, 2013

The CME-flare scenario

Summary of observations

preflare flash mpulsive decay hard X-rays microwaves intensity decimetric radio metric radio EUV soft X-rays Hα time

Benz, 2002

Kontar et al., PRL, 2017

Acceleration processes

Desai & Burgess, JGR, 2008

Reconnection .vs. Shocks

- Both met from solar and stellar flares to AGN jets (Sironi+,2015) and supernovae shock waves.
- · SHOCKS: ~ 10% efficiency (Lin 2011)

· RECONNECTION:

- · High efficiency
- Collisionless & fast
- Multiple magnetic islands => merge => accelerate e- => HXR

What don't we know yet?

- CMEs and flares (& particle acceleration) different manifestations of a single grand process or not?
- Acceleration mechanisms
 - * Acceleration onset e-
 - * Relative importance
- Exactly how do e- escape the flaring site not understood at all

Desai & Burgess, JGR, 2008

What don't we know yet?

- CMEs and flares (& particle acceleration) different manifestations of a single grand process or not?
- Acceleration mechanisms
 - * Acceleration onset e-
 - Relative importance
- Exactly how do e- escape the flaring site not understood at all

Desai & Burgess, JGR, 2008

Simulations

3D MHD-EPIC simulations

Global MHD (BATS-R-US) + local implicit Particle-in-Cell (iPIC3D)

Successful Magnetospheric Studies

Two-way coupling

Daldorff et al., JCP, 2014

Simulations to Lynx

- · Acceleration onset and efficiency
- · Thermal—non-thermal component
- · Heating-cooling in time
- · Synthetic views in different wavelengths
- · Emission profiles in up to strong stellar B
- · CME-flare relation

What about stellar flares?

- · Flaring activity depends on B, which depends on the stellar characteristics.
- · Many X-ray stellar flares (1st Reise+, ApJ, 1975)
- · X-ray flares F-M stars indicating energetic transient events (~min-hours) & magnetic reconnection (e.g. Güdel & Nazé 2009).
- Large stellar flares T~100 MK (e.g. Osten+2005, 2007), while solar peak T~20-30 MK.
- · Evidence of HXR persisting throughout the entire flare time evolution (Osten et al. 2007)

Stellar flares

- Large flare on Proxima Centauri (Güdel et al. 2002, 2004) Chromospheric evaporation evidence, $n < 10^{10} => 4 \times 10^{11}$ cm⁻³
- Neupert Effect (1968): $L_U(t) \propto dL_X(t)/dt$ (e.g. Güdel+2002)

Güdel et al. 2002 XMM-Newton

Stellar flares

- Large flare on Proxima Centauri (Güdel et al. 2002, 2004) Chromospheric evaporation evidence, $n < 10^{10} => 4 \times 10^{11}$ cm⁻³
- Neupert Effect (1968): $L_U(t) \propto dL_X(t)/dt$ (e.g. Güdel+2002)

Lynx: will improve quality spectra with time slices resolving fast processes

Güdel et al. 2002 XMM-Newton

RHESSI 15-40 keV

EIS

Doppler velocity ~200–400 km/s

• $T_{\rm e} = 9.4 \, {\rm MK}$

• $n_{\rm e} \sim 4 \times 10^9 \, {\rm cm}^{-3}$

Warm outflow

appeared before HXR peak time:

Slow-mode shock

Reconnection inflow

Bright blob

• EIS

$$T_{\rm e} = 12 \text{ MK}$$

 $n_{\rm e} \sim 1 \times 10^{10} \text{ cm}^{-3}$

 $V_{\rm NT}$ ~ 100 km/s at impulsive phase

- XRT: faint X-ray enhancement
- RHESSI 4–6 keV thermal source $T_e = 12$ MK from HXR spectrum

Hard X-ray nonthermal source

RHESSI 15-40 keV

Reconnection outflow

EIS

- Doppler velocity ~200–400 km/s
- $T_{\rm e} = 9.4 \, {\rm MK}$
- $n_{\rm e} \sim 4 \times 10^9 \, {\rm cm}^{-3}$

Warm outflow

appeared before HXR peak time:

Slow-mode shock

Fast-mode shock

Upflow: $V_D \sim -20 \text{ km/s}$

EIS

Downflow: $V_D \sim 10 \text{ km/s}$

EIS

Bright blob

• EIS

$$T_{\rm e} = 12 \text{ MK}$$

 $n_{\rm e} \sim 1 \times 10^{10} \text{ cm}^{-3}$

 $V_{\rm NT}$ ~ 100 km/s at impulsive phase

- XRT: faint X-ray enhancement
- RHESSI 4–6 keV thermal source $T_e = 12$ MK from HXR spectrum

Hard X-ray nonthermal source

RHESSI 15-40 keV

Reconnection outflow

EIS

- Doppler velocity ~200–400 km/s
- $T_{\rm e} = 9.4 \, {\rm MK}$
- $n_{\rm e} \sim 4 \times 10^9 \, {\rm cm}^{-3}$

Warm outflow

appeared before HXR peak time:

Slow-mode shock

Fast-mode shock

Upflow: $V_D \sim -20 \text{ km/s}$

EIS

Downflow: $V_D \sim 10 \text{ km/s}$

EIS

Bright blob

• EIS

$$T_{\rm e} = 12 \text{ MK}$$

 $n_{\rm e} \sim 1 \times 10^{10} \text{ cm}^{-3}$

 $V_{\rm NT}$ ~ 100 km/s at impulsive phase

- XRT: faint X-ray enhancement
- RHESSI 4–6 keV thermal source $T_e = 12$ MK from HXR spectrum

Downward motion $V_D \sim 30 \text{ km/s}$ EIS

Hard X-ray nonthermal source

RHESSI 15-40 keV

Reconnection outflow

EIS

- Doppler velocity ~200–400 km/s
- $T_{\rm e} = 9.4 \, {\rm MK}$
- $n_{\rm e} \sim 4 \times 10^9 \, {\rm cm}^{-3}$

Warm outflow

appeared before HXR peak time:

Slow-mode shock

Fast-mode shock

Upflow: $V_D \sim -20 \text{ km/s}$

EIS

Downflow: $V_D \sim 10 \text{ km/s}$

EIS

EIS

- Doppler velocity -20 km/s
- $T_{\rm e} = 1.2 \, {\rm MK}$
- $n_e = 2.5 \times 10^9 \text{ cm}^{-3}$

Bright blob

• EIS

$$T_{\rm e} = 12 \text{ MK}$$

 $n_{\rm e} \sim 1 \times 10^{10} \text{ cm}^{-3}$

 $V_{\rm NT} \sim 100$ km/s at impulsive phase

- XRT: faint X-ray enhancement
- RHESSI 4–6 keV thermal source $T_e = 12$ MK from HXR spectrum

Downward motion $V_D \sim 30 \text{ km/s}$ EIS

Hard X-ray nonthermal source

RHESSI 15-40 keV

Reconnection outflow

EIS

- Doppler velocity ~200–400 km/s
- $T_{\rm e} = 9.4 \, {\rm MK}$
- $n_{\rm e} \sim 4 \times 10^9 \, {\rm cm}^{-3}$

Warm outflow

appeared before HXR peak time:

Slow-mode shock

Fast-mode shock

Upflow: $V_D \sim -20 \text{ km/s}$

EIS

Downflow: $V_D \sim 10 \text{ km/s}$

RHESSI 15-40 keV

EIS

EIS

- Doppler velocity -20 km/s
- $T_{\rm e} = 1.2 \, {\rm MK}$
- $n_e = 2.5 \times 10^9 \text{ cm}^{-3}$

Bright blob

• EIS

$$T_{\rm e} = 12 \text{ MK}$$

 $n_{\rm e} \sim 1 \times 10^{10} \text{ cm}^{-3}$

 $V_{\rm NT}$ ~ 100 km/s at impulsive phase

- XRT: faint X-ray enhancement
- RHESSI 4–6 keV thermal source $T_e = 12$ MK from HXR spectrum

Downward motion $V_D \sim 30 \text{ km/s}$ EIS

Hard X-ray nonthermal source R=10,000=>v~30km/s

Conclusions and summary

- Sun valuable laboratory, but
 - Does not provide all the answers
- * Stellar flares might drastically change the picture
- Lynx observations hopefully will shed light into:
 - Densities, temperatures, emitting volumes and masses of hot plasma in stellar flares
 - May help disentangle thermal—non-thermal components
 - * Resolve fast processes
 - Provide insights on acceleration processes
 - * Blueshift measurements of relevant flows, maybe even chromospheric evaporation?