Observations of Young Stellar Clusters: From Chandra to Lynx

Part of an unapologetic argument that stellar lifecycles should be a pillar of Lynx Science

Scott Wolk

Big Questions of Relevance to Stellar Astronomy* How do rotation and magnetic fields affect stars?

- How does the dynamo work?
- How is the corona heated?
- How do stars form?
- How do circumstellar disks evolve, form planetary systems?
- How diverse are planetary systems? •
- Do habitable worlds exist on other stars? •

X-rays inform each of these topics, are vital for understanding how stars work and how they interact with their environment

Observations with large collecting area coupled with high spectral, spatial resolution are necessary to make progress in answering these questions

*From R Osten as informed by the Decadal Survey and more recent results

Why Bother Looking at Young Stars in X-rays ?

- Young stars are X-ray bright
 - HMS- High energy wind shocks?
 - LMS- Despite pedestrian 5000K, temperatures they have hot corona.
 - Insight into the interior workings of LMS.
- To identify young stars.
 - After stars lose their disks X-ray surveys are the only way to find young stellar objects
 - This has allowed us to understand the history of star formation in the galaxy.
- Direct observation of material accreting onto very young stars.
- X-rays are probably responsible for rapid heating of protoplanetary disks and can have deleterious effects on

Why Bother Looking at Young Stars in X-rays ?

Young stars are X-ray bright

- HMS- High energy wind shocks?
- LMS- Despite pedestrian 5000K, temperatures they have hot corona.
 - Insight into the interior workings of LMS.

• To identify young stars.

- After stars lose their disks X-ray surveys are the only way to find young stellar objects
- This has allowed us to understand the history of star formation in the galaxy.
- Direct observation of material accreting onto very young stars.
- X-rays are probably responsible for rapid heating of protoplanetary disks and can have deleterious effects on

Orion is nice, but

One age

- 1-20 Myr (some clusters are up to 100Myr)
- One mass distribution
 - Not a lot of OB stars, especially in Orion A.
 - Binarity seems a function of stellar density
- One set of initial conditions
 - Triggering mechanisms matter to the final elemental abundances and perhaps more.
- One metallicity

 One look angle, M42 has a molecular cloud behind, but there are other arrangements

Specific Science goals for Star Formation Regions

Cluster Census

- Transition disk timescales
- X-ray effects on cluster morphology
- Detecting grain evolution
- X-rays from protostars
- Effect of X-rays on forming planets disks
 - Especially flares.
- Understanding the magnetic fields.
- What are the statistics of radio flaring for young stellar objects?
- Are radio flares correlated with X-ray flares?
- \bullet Understanding diffuse emission and feedback.
- What is the relationship between X-rays and radio emission from YSOs?

Massive clusters within ~ 3.5 kpc

Region	Distance	$\log F_{X, \text{limit}}$	Number of Sources in Sample			
			Total	X-Ray	IR-excess	OB
	(kpc)	(photons s^{-1} cm ⁻²)	(stars)	(stars)	(stars)	(stars)
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Orion Nebula	0.414	-6.6	1367 (90%)	1216	631	13
Flame Nebula	0.414	-6.2	342 (71%)	254	193	2
W 40	0.5	-6.1	411 (96%)	174	309	3
RCW 36	0.7	-6.8	307 (80%)	260	135	2
NGC 2264	0.914	-6.1	968 (83%)	599	555	7
Rosette	1.33	-5.9	1195 (69%)	700	623	21
Lagoon	1.3	-6.05	1251 (61%)	947	468	28
NGC 2362	1.48	-5.95	246 (50%)	207	49	12
DR 21	1.5	-6.05	662 (67%)	199	507	1
RCW 38	1.7	-6.2	495 (56%)	412	112	1
NGC 6334	1.7	-5.9	987 (59%)	644	403	8
NGC 6357	1.7	-6.0	1439 (64%)	1047	524	16
Eagle Nebula	1.75	-6.1	1614 (63%)	1005	723	56
M 17	2.0	-6.5	1322 (57%)	1247	128	64
Carina Nebula	2.3	-5.9	2790 (38%)	2043	815	134
Trifid Nebula	2.7	-6.0	357 (67%)	227	174	2
NGC 1893	3.6	-6.65	854 (65%)	617	349	29

Disk Survival timescales

IR sources are only about 50% of the clusters

Region	Distance	$\log F_{X,\mathrm{limit}}$	limít Nu		nber of Sources in Sample		
(1)	(kpc)	(photons s^{-1} cm ⁻²)	Total (stars)	X-Ray (stars)	IR excess (stars)	OB (stars)	
	(2)	(5)	(1)	20J	(0)	(7)	
Orion Nebula	0.414	^{-6.6} X-rays	1367 (90%)	1216	631	13	
Flame Nebula	0.414	-6.2 are	342 (71%)	254	193	2	
W 40	0.5	-6.1 are	411 (96%)	174	309	3	
RCW 36	0.7	-6.8 Dasicali	307 (80%)	260	135	2	
NGC 2264	0.914	<u> </u>	y 968 (83%)	599	555	7	
Rosette	1.33	^{-5.9} Chandra	1195 (69%)	700	623	21	
Lagoon	1.3	-6.05 oppointing	1251 (61%)	947	468	28	
NGC 2362	1.48	-5.95 ETISIUVI	¹ y _{246 (50%)}	207	49	12	
DR 21	1.5	-6.05	662 (67%)	199	507	1	
RCW 38	1.7	-6.2	495 (56%)	412	112	1	
NGC 6334	1.7	-5.9	987 (59%)	644	403	8	
NGC 6357	1.7	-6.0	1439 (64%)	1047	524	16	
Eagle Nebula	1.75	-6.1	1614 (63%)	1005	723	56	
M 17	2.0	-6.5	1322 (57%)	1247	128	64	
Carina Nebula	2.3	-5.9	2790 (38%)	2043	815	134	
Trifid Nebula	2.7	-6.0	357 (67%)	227	174	2	
NGC 1893	3.6	-6.65	854 (65%)	617	349	29	
				\mathbf{V}			
			The ratio o diskles	f disked to s stars	Kuhn e	t al. (2014	

Disk-Grain Evolution

Chandra only has sufficient counts statistics for a few sources and even then the errors are large

Disk irradiation: fluorescence

Science Landscape of ~ 2030

- TESS (2018), Plato (2024) Survey millions of stars to find exoplanets.
- Gaia (2013) 3D maps of the galaxy to 10 Kpc
- JWST (2018), WFIRST(2025) Deep IR imaging and spectroscopy. constraints on stellar populations in crowded stellar clusters down to the H-burning limit, properties of starspots in transiting exoplanet systems
- ALMA, VLA SKA (2023+) Radio telescopes will study chemistry and dynamics of planet-forming disks, non thermal stellar processes
- E-ELT, TMT GMT (2022+) Ground based optical and NIR telescopes will map surface magnetic fields in a variety of stars
- E-Rosita (2018) All sky survey will increase the number of known X-ray emitting stars by about 100x.
- Athena (2028) sensitive R~200-500 X-ray spectroscopy (as far as stars are concerned). PSF limits utility in crowded regions.

Gaia will be great, but

1000 million objects 10 kpc 20 k measured to | = 20>20 globular clusters Horizon for proper motions Many thousands of Cepheids and RR Lyrae accurate to 1 km/s Dark matter in disc measure from distances/motions of K g 30 open clusters within 500 pc Mass of galaxy from rotation curve at 15 kpc Sun Horizon for detection of Jupiter mass planets (200 pc) SUPERMASSIVE BLACK HOLE Dynamics of disc, spiral arms, and bulge Proper motions in LMC/SMC individually to 2-3 km/s Horizon for distances accurate to 10 per cent General relativistic light-bending determined to 1 part in 10⁶ 1 m DISTANCE 0.000 YEA SOURCE: EUROPEAN SPACE AGENCY KARL TATE / © SPACE.com

THE BILLION STARS OF GAIA

Gaia will measure each of its target stars about 70 times over the course of its five-year mission, monitoring distances, movements and changes in brightness. This averages 40 million observations per day. Gaia's 1 billion target stars amount to only one percent of the total stars in the Milky Way galaxy.

Gaia will be great, but

Gaia will be great, but

Why are X-rays important/essential in protostars ?

• Feedback irradiation effects on surrounding circumstellar material: ionization, heating, fluorescence

- Effects on chemistry (=> diagnostics) + heating
- Studied theoretically on disks & jets
 - Provides ionization fraction: $x_e = n_e/n_p \sim 10^{-9} 10^{-5}$

• (ISM + LECR => $X_{e} \approx 10^{-7}$)

- Effects on cold material: fluorescence (from AGNs)
 - Fe line @ 6.4 keV

• Ionization provides necessary coupling between circumstellar matter and magnetic fields via ambipolar diffusion

• This coupling regulates large-scale accretion vs. ejection in an otherwise neutral environment (e.g., Shu et al., Ferreira et al...)

We might know about 10,000 YSOs in X-rays

- We know < 100 protostars,
- they are all faint
- They are all embedded
- They are all close to other X-ray sources

NICMOS 1999

VLT 2005

VLA 2016

VLA 2016

Athena will be great, but

Athena will be great, but

RCW 38

RCW 38

RCW 38

The program: Study Nearby Massive Star Formation Regions

Goals

- Cluster Census
- Transition disk timescales
- X-ray effects on cluster morphology
- Detecting grain evolution
- X-rays from protostars
- Effect of X-rays on planets and forming disks
 - Especially flares.
 - Understanding the magnetic fields
- Understanding diffuse emission and feedback.

RCW 38 0.1" Left, 0.5" (Chandra) Right

- Targets
 - 30 Dor (LMC)
 - ♦ ARCHES (~8000pc)
 - NGC 3603 (6900 pc)
 - Carina (2400 pc)
 - NGC 281 (2100 pc)
 - RCW 38 (1700pc)
 - Etc.

Athena 2028

THE BILLION STARS OF GAIA

Gaia will measure each of its target stars about 70 times over the course of its five-year mission, monitoring distances, movements and changes in brightness. This averages 40 million observations per day. Gaia's 1 billion target stars amount to only one percent of the total stars in the Milky Way galaxy.

THE BILLION STARS OF GAIA

Gaia will measure each of its target stars about 70 times over the course of its five-year mission, monitoring distances, movements and changes in brightness. This averages 40 million observations per day. Gaia's 1 billion target stars amount to only one percent of the total stars in the Milky Way galaxy.

Athena will be great, but

What is the Diffuse

- Diffuse Emission has now been reported in about half a dozen regions of massive star formation
- An X-ray halo around IRS 2?
 - Diffuse flux is much harder than that of IRS 2.
- Thermal emission?
 - Would need to be hot ~ 10keV electrons.
 - Pressure would be high leading to shocks.
 - No lines seen.
 - Wind driven models of diffuse emission tend have cooler & thermal emission profiles.
- Spectrum dominated by power-law.
 - Synchrotron [] B field to excite electrons
 - Common in SNR but lack of lines implies a shell type SNR, not consistent with the morphology.
 - Energetics
 - $L_x \sim 3x10^{32}$ ergs/sec
 - Assuming Equipartition
 - ≽ B~4.9µG
 - 2.2x10⁴⁴ ergs in relativistic electrons
 - e should decay in 20,000 years (unique among star forming regions)
 - Caused by recent SN? or...
 - Replenished by colliding winds ?
 - Shell supernovae remnants tend to be symmetric.

Embedded clusters within ~ 1 kpc

Name	$L_{\max}^{a}(L_{\odot})$	Cloud Mass (M_{\odot})	Dist, (pc)	
S171	80,	260	850	
AFGL490	1900.	850	900	
NGC 1333	89.	170	240	
IC348	49,	300	320	
XY Per	1.1	9	160	
Tau L1495	12.	220	140	
LkHa101	4500.	540	700	
Tau L1551	19.	23	140	
GGD 4	360,	290	1000	
CB34	86,	130	1500	
IRAS 06046-0603	27.	210	830	
Mon R2	26000.	1000	830	
GGD 12-15	5700.	420	830	
GGD 17	150.	380	830	
VY Mon	390.	340	800	
Cha I	8.1	40	160	
Lupus III	7.5	110	200	
Oph L1688	130,	320	150	
Oph L1689	18.	140	150	
Oph L1709	0.0	19	150	
MWC 297	690.	290	450	
Serpens	41,	180	260	
CrÁ	72,	140	170	
RAS 20050+2720	230.	430	700	
BD+40°4124	1500.	620	980	
\$106	74000.	1900	1700	
L988-e	210,	670	700	
\$131	130.	0	900	
NGC 7129	1700.	430	1000	
C5146	550.	1200	950	
S140-North	190,	450	900	
\$140	21000.	750	900	
L1206	680.	57	900	
L1211	160.	390	730	
Сер А	14000.	520	730	
Cep C	120.	470	730	

Census

IR sources are only about 50% of the

clusters

Region	Distance	$\log F_{X,\mathrm{limit}}$	Nu	Number of Sources in Sample			
			Total	X-Ray	IK-excess	OB	
	(kpc)	(photons s^{-1} cm ⁻²)	(stars)	(stars)	(stars)	(stars)	
(1)	(2)	(3) X-rays a	re 🕩	(5)	(6)	(7)	
Orion Nebula	0.414	-6.6 basicall	y 1367 (90%)	1216	631	13	
Flame Nebula	0.414	-6.2 limited b	y 342 (71%)	254	193	2	
W 40	0.5	-6.1 Chandr	a 411 (96%)	174	309	3	
RCW 36	0.7	-6.8 Sensitivi	ty 307 (80%)	260	135	2	
NGC 2264	0.914	-6.1	968 (83%)	599	555	7	
Rosette	1.33	-5.9	1195 (69%)	700	623	21	
Lagoon	1.3	-6.05	1251 (61%)	947	468	28	
NGC 2362	1.48	-5.95	246 (50%)	207	49	12	
DR 21	1.5	-6.05	662 (67%)	199	507	1	
RCW 38	1.7	-6.2	495 (56%)	412	112	1	
NGC 6334	1.7	-5.9	987 (59%)	644	403	8	
NGC 6357	1.7	-6.0	1439 (64%)	1047	524	16	
Eagle Nebula	1.75	-6.1	1614 (63%)	1005	723	56	
M 17	2.0	-6.5	1322 (57%)	1247	128	64	
Carina Nebula	2.3	-5.9	2790 (38%)	2043	815	134	
Trifid Nebula	2.7	-6.0	357 (67%)	227	174	2	
NGC 1893	3.6	-6.65	854 (65%)	617	349	29	