X-ray spectroscopy of nearby galactic nuclear regions

- 1. How intermittent are AGNs?
- 2. What about the silent majority of the SMBHs?
- 3. How do SMBHs interplay with their environments?

Q. Daniel Wang

University of Massachusetts

Sgr A*: X-ray flare properties

Detected flares have a power law spectrum of index ~ 2.2 and account for $\sim 1/3$ of the total X-ray flux of Sgr A* (Wang et al. 13).

Sgr A*: quiescent X-ray emission

Spectral testing of RIAF solutions

$$T = T_o(r_o/r)^{\theta}$$
 $n = n_o(r_o/r)^{3/2-s}$
 $\dot{M} = \dot{M}_o(r/r_o)^s$
 $dEM/d\log(T) \propto (T_o/T)^{\gamma}$
(where $\gamma = 2s/\theta$)

The best-fit s=1.0(0.7-1.2) (for $\theta \sim 1$) is consistent with the exact prediction of the adiabatic inflow-outflow solution (e.g., Begelman 2012); both the fitted abundance and N_H are also as expected.

Wang et al. (2013)

X-ray reverberation: Sgr A* burst ~ 100 years ago

X-ray reverberation: a Sgr A* burst ~ 100 years ago

Earlier Galactic center activity: Detection of recombining plasma.

5. Nakashima et al. (13)

RGS survey of nearby galactic nuclear regions: OVII triplet

XMM-Newton RGS spectrum of the M31 inner bulge

• $M_{SMBH} \sim 1.4 \times 10^8 M_{\odot}$

IRAC 8

K-band

0.5-2 keV

Li & Wang (07)

- not an AGN
- No recent star formation
- Diffuse hot gas: $T \sim 3 \times$ 10^6 K ; Lx~ $2 \times 10^{38} \text{ erg/s}$

Strong deviation of the OVII Ka triplet from the thermal model: high G-ratio.

Liu, Wang, Li, & Peterson (10)

X-ray spectral model of diffuse hot plasma around an intermittent AGN

Compare the model and the RGS spectrum to constrain the parameters: the luminosity of the AGN and time after its turning-off, plus metal abundances.

- Adopt the β-model of the hot gas density distribution, as inferred from X-ray imaging data.
- Set initial ionization state by running Cloudy, assuming a typical Seyfert AGN spectrum.
- Turn off the AGN and calculate the ionization evolution as a function of the time.
- Disperse the 2-D project of the 3-D model into a RGS spectrum.

Preliminary model fit to the RGS spectrum of the M31 nuclear region

- · L=10^{44.5} erg/s
- Time = $4.8 \times 10^5 \, \text{yr}$
- Slightly super solar metal abundances
- Plus a power law of photon index=1.7, representing pointlike sources (constrained by Xray imaging data).

Evolution of the model spectrum

Simulated Astro-H/SXS spectrum of the M31 nuclear region

- 50 ks exposure
- Including a power law for point sources
- Multiple triplets
 and recombination
 edges can be
 detected,
- Providing powerful diagnostics of the ionization state and the underlying physics.

Emission line diagnostics: AGN luminosity and switch off time

5

3

6.0

OVII Ka triplet: Antennae galaxy

Optical (Yellow), X-ray (Blue), Infrared (Red)

Summery

- 1. Sgr A^* accretes in an inflow/outflow fashion, with > 99% of the initially captured matter ejected in the $r\sim10^4$ - 10^5 r_s range.
- 2. Spatially resolved X-ray reflection studies show that Sgr A* had multi-bursts ~100 years ago.
- 3. Detection of diffuse recombining plasma indicates that $Sgr\ A^*$ was probably a Seyfert-like AGN about 10^5 yr ago.
- 4. Non-CIE plasma appears common in nuclear regions of other galaxies. The modeling may allow us to constrain past AGN activities.
- 5. Diffuse hot plasma in nuclear regions and halos may never be in a CIE state because intermittent AGNs!

Figure 1. Left axis: density-weighted timescales (in units of cm⁻³ s) for C, N, O, Ne, Mg, Al, S, Si, Ar, Ca, Fe, and Ni to achieve one e-folding (e^{-1}) toward ionization equilibrium in a constant temperature plasma. Right axis: density-weighted timescale for all ions to be within 10% of their equilibrium in & Hughes (10) value.

Fig. 2.— [Left axis] Density-weighted timescales (in units of cm⁻³s) for C, N, O, Ne, Mg, Al, S, Si, Ar, Ca, Fe, and Ni to achieve one e-folding (e^{-1}) of any change in ionization state for an atom in a constant temperature plasma. [Right axis] Density-weighted timescale for an ionization state change of 90%.