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Sgr A*: X-ray flare properties
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Detected flares have a power law
spectrum of index ~ 2.2 and
account for ~1/3 of the total X-ray
flux of Sgr A* (Wang et al. 13).
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Spectral testing of RIAF solutions
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The best-fit s=1.0(0.7-1.2) (for 0~1) is consistent with
the exact prediction of the adiabatic inflow-outflow
solution (e.g., Begelman 2012); both the fitted abundance

and Ny are also as expected.
Wang et al. (2013)




X-ray reverberation:
Sgr A* burst ~ 100 years ago
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X-ray reverberation:
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a Sgr A* burst ~ 100 years ago
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Sgr A* was bright about 100
years agd“(L, ~ 103 ergXs)

Ponti et al. 2010
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Earlier Galactic center activity:
Detection of recombining plasma

, (a) Suzaku 1-3 keV

) (b) Chandra 1- keV
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S. Nakashima et al. (13)
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N Activity history of Sgr A*
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Liu, Wang, Mao (12)




XMM-Newton RGS spectrum of the

Li & Wang (07)

M31 inner bulge

MSMBH ~14 X 108 M@
notn AGN Strong deviation of the

. OVII Ka triplet from the
No recent star formation thermal model: high G-ratio.

Diffuse hot gas: T ~ 3 x
106 K; Lx~2x1038 erg/s

Liu, Wang, Li, & Peterson (10)




X-ray spectral model of diffuse hot
plasma around an intermittent AGN

Compare the model and the RGS spectrum to
constrain the parameters: the luminosity of the
AGN and time after its turning-off, plus metal
abundances.

» Adopt the p-model of the hot gas density
distribution, as inferred from X-ray imaging data.

- Set initial ionization state by running Cloudy,
assuming a typical Seyfert AGN spectrum .

- Turn off the AGN and calculate the ionization
evolution as a function of the time.

» Disperse the 2-D project of the 3-D model into a
RGS spectrum.

Zhang, Wang, et al. (15 in prep)




Preliminary model fit to the RGS
spectrum of the M31 nuclear region
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Evolution of the model spectrum

— 1000 years




Simulated Astro-H/SXS spectrum of
the M31 nuclear region
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* Including a power

law for point
sources

Multiple triplets
and recombination
edges can be
detected,

Providing powerful
diagnostics of the
ionization state and
the underlying
physics.
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Emission line diagnostics: AGN
luminosity and switch of f time

Ratio map of O VIl vs. O VIII _ Ratio map of OVII G-ratio

Luminosity (10™ erg/s)
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Time (10™ years) Time (10™ years)




OVIT Ka triplet: Antennae galaxy

Optical (Yellow), X-ray (Blue), Infrared
(Red)




Summery

. Sgr A* accretes in an inflow/outflow fashion, with >
99% of the initially captured matter ejected in the
r~10%-10° r, range.

. Spatially resolved X-ray reflection studies show that
Sgr A* had multi-bursts ~100 years ago.

. Detection of diffuse recombining plasma indicates
that Sgr A* was probably a Seyfert-like AGN about
10° yr ago.

. Non-CIE plasma appears common in nuclear regions
of other galaxies. The modeling may allow us to
constrain past AGN activities.

. Diffuse hot plasma in nuclear regions and halos may
never be in a CIE state because intermittent AGNs!
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Figure 1. Left axis: density-weighted timescales (in units of cm™3 s) for C,

N, O, Ne, Mg, Al, S, Si, Ar, Ca, Fe, and Ni to achieve one e-folding (e~!)

toward ionization equilibrium in a constant temperature plasma. Right axis:

density-weighted timescale for all ions to be within 10% of their equilibrivin YR ailslJIXHE10)
value.
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F1G. 2.— [Left axis] Density-weighted timescales (in units of ecm=2s) for C, N, O, Ne, Mg, Al, S, 8i, Ar, Ca, Fe, and Ni to achieve one
e-folding (e=1) of any change in ionization state for an atom in a constant temperature plasma. [Right axis|] Density-weighted timescale
for an ionization state change of 90%%.




