Combining X-rays and QSO spectroscopy to probe the intracluster and circumgalactic medium

Joseph N. Burchett
UMass-Amherst

Collaborators
Q. Daniel Wang
Todd M. Tripp
Christopher Willmer
Chong Ge
Key Questions

Where are the ‘missing baryons’ in galaxy clusters?

How does the cluster environment transform galaxies and their gaseous halos?
Data Sources

- X-ray imaging/spectroscopy from XMM-Newton and Chandra
- UV spectroscopy of background QSO from HST/COS
- Optical spectroscopy of galaxies from MMT/Hectospec
Putting it all together

7 clusters
3 sightlines
1000s of galaxies

Burchett et al. 2016 (in prep)

Joseph N. Burchett

Chandra Science for the Next Decade
Key Questions

Where are the ‘missing baryons’ in galaxy clusters?

How does the cluster environment transform galaxies and their gaseous halos?
Missing Mass in Galaxy Clusters

- Universal Baryon Fraction: ~15-17 %

- Amount estimated from hot gas/intracluster light/stars: ~10 %

- Large fraction of baryons ‘missing’

- Missing fraction dependent on total cluster mass
Where could the baryons be hiding?

- Warm-hot ionized gas
 - $T = 10^5 - 10^6 \text{ K}$

- radii $> R_{500}$

- IGM: radii $>> R_{200}$
QSO spectroscopy probing warm-hot gas

- O VI absorption
 - Strong doublet in the UV
 - Tracer of collisionally ionized gas

- Broad H I absorption
 - Extremely sensitive to H I gas
 - Line profile broadened by thermal and non-thermal motions
Absorption line results from HST/COS

No O VI!
No broad HI!

Joseph N. Burchett
Chandra Science for the Next Decade
8/17/2017
Warm-hot contribution to baryon budget

Hot gas from X-rays

Limits on warm-hot gas from UV QSO spectra

Burchett et al. 2016 (in prep)
Key Questions

Where are the ‘missing baryons’ in galaxy clusters?

How does the cluster environment transform galaxies and their gaseous halos?
The CGM and galaxy evolution

Accretion

Recycling

Outflows

Joseph N. Burchett
Chandra Science for the Next Decade
8/17/2017
The CGM and galaxy evolution
The CGM and host galaxies

- H I is prevalent in the CGM of galaxies in all masses*
- Presence of H I independent of star-forming/quiescent host galaxy*
The CGM and host galaxies

- H I is prevalent in the CGM of galaxies in all masses*
- Presence of H I independent of star-forming/quiescent host galaxy*

* For isolated galaxies
The CGM and environment

- Detection rate of CGM C IV plummets at high density ($M_{\text{halo}} \sim 10^{12.5} M_{\odot}$)

- H I is detected in CGM of galaxies at all densities
CGM probed by our survey

Burchett et al. 2016 (in prep)
A dearth of H I in cluster halos

H I is nearly ubiquitous in CGM even out to large impact parameters...

Burchett et al. 2016 (in prep)
A dearth of H I in cluster halos

H I is nearly ubiquitous in CGM even out to large impact parameters...

...but not in our cluster galaxies

Burchett et al. 2016 (in prep)
Toward the future

• Science drivers: parameter space
 • Cluster mass and richness
 • Dynamical states of clusters
 • Redshifts to cover different UV diagnostics

• Getting the data
 • UV
 • HST/COS observations of new QSOs
 • Growing COS archive
 • X-ray
 • Chandra
 • Characterizing higher redshift clusters
 • Resolving local substructure around individual galaxies
Conclusions

No evidence for significant reservoir in 10^{5-6} K gas at $<1.5 \ R_{200}$

Clusters show extreme examples of CGM dependence on environment