Time evolution of luminosity and spin period of X-ray pulsars in the Small Magellanic Cloud

Jun Yang1,2

Silas Laycock1, Dimitris Christodoulou1, Jeremy Drake2, Samuel Fingerman1, Jaesub Hong2, Andreas Zezas2, Vallia Antoniou2, Malcolm Coe3, Wynn Ho3

1. University of Massachusetts, Lowell, MA, United States.
2. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, United States.
3. University of Southampton, Southampton, United Kingdom
Introduction to the library of pulsars in the Magellanic Clouds

event lists, light curves, periodograms & spectra

• Why study pulsars in Magellanic Clouds:

NSs hold unsolved problems; population-statistical study.

low absorption, minimum foreground contamination, known distance (-> categorize luminosity of the Pulsars). The process of accretion and X-ray emission in HMXB

• Known pulsars with combination of 3 satellites, physical parameters

e.g. SXP 348, SXP 1323

• Pulse profile modeling

e.g. SXP 504

In sum

Outline
Library of pulsars in the Magellanic Clouds

Pulsars In SMC & Model

Intro Library

Pulsars spin up/down

Pulse profile model

In sum

Chandra
155+30 Obs: 2000-2014

XMM-Newton
116+42 Obs: 2000-2014

RXTE
Weekly Obs: 1997-2012
Luminosity of X-ray pulsars in the Small Magellanic Cloud

Spin Period (s)

Luminosity Range: \(10^{31}-10^{38} \text{ erg/s}\)

Observation overview

Luminosity:

- \(10^{31}-10^{38} \text{ erg/s}\)

Classify:

- pulsating
- non-pulsating

Intro Library

Pulsars spin up/down

Pulse profile model

In summary

Fast pulsars rarely detected

Faint source

Short exposure
Luminosity of X-ray pulsars in the Small Magellanic Cloud

Observation overview

Luminosity Range:
$10^{31} - 10^{38}$ erg/s

Spin Period (s)

Fast pulsars rarely detected
Faint source
Short exposure

Pulsars in SMC & Model

Intro Library

Pulsars spin up / down
Pulse profile model

In sum

Classify: pulsating & non-pulsating
Pulsars in SMC & Model Intro Library

Pulsars spin up/down Pulse profile model

In sum

Time evolution of Source properties with 3 satellite combination
e.g. SXP 348

Luminosity (erg/s)

Pulse fraction

Amplitude (Counts/s)

Spin Period(s)

Significance (%)

Modified Julian Date

XMM-Newton

Chandra

RXTE does not have Pulse Frac info

Spin up: Mass and angular momentum to NS

RXTE does not have Pulse Frac info

In sum

Modified Julian Date

Spin up: Mass and angular momentum to NS

RXTE does not have Pulse Frac info

In sum
SMC Pulsar library products

- **Spin up**: 0.016932 s/day
- **Pulse profile model**
- **Orbital modulation, accretion torque**
- **In sum**: 26 spin up, 17 spin down
- **43 out of 65 pulsars have measured orbit period**
Model: Off-center magnetic axis with GR effect

Best fitting angle: $\theta = 28^\circ$ and $\beta = 52^\circ$

θ: angle between spinning axis and B
β: angle between spinning axis and light of sight

SXP 504 2003-12-14 Observation

Class 1

Class 2

Class 3

Class 4

Phase

Period (s)

The reduced χ^2

Pulsars In SMC & Mode I

Intro Library

Pulsar spin up/down

Pulse profile model

In sum
Summary & Outlook

- Library of 3 satellites combination: Chandra, XMM-Newton, RXTE
 Known pulsars in SMC & LMC: event lists, pulse profiles, spectra

- Time evolution of their luminosities and spin period
 26 spin up and 17 spin down

- Modeling
 More phenomenon into current model: e.g., flow column geometry including physics of accretion shock, accretion rate and photon energy

- Astrosat & HXMT (Hard X-ray Modulation Telescope)
 Investigate the hard X-ray sources; bright galactic pulsars, expand the period range of the pulsars
In sum, Pulsars spin up/down. Pulse profile model.

In SMC & Mode

Thank you!
Library of pulsars in the Magellanic Clouds

Pulsars in SMC & Model

Intro Library

Pulsars in SMC

Pin up/down

Pulse profile model

In sum
Library of pulsars in the Magellanic Clouds

Pulsars in SMC & Model

Into Library

Pulsars spin up/down

Pulse profile model

In sum
Library of pulsars in the Magellanic Clouds

Observation overview

Amplitude

of observations

Log (pulse amplitude (cnt/s)) with Chandra Observations

Log (pulse amplitude (cnt/s)) with XMM-Newton Observations
SMC Pulsar library products

Pulsars
In SMC Mode

Jun Yang
Intro Library

Pulsar spin up/down
Pulse profile model

In sum

XMM-Newton EPIC PN photon counts
Cumulative # of pulsation detected

Spin Period (s)

<table>
<thead>
<tr>
<th>Delt. P/P</th>
<th>Cumulative # of pulsation detected</th>
</tr>
</thead>
</table>

| XMM-newton Obs | Chandra Obs | RXTE Obs |

<table>
<thead>
<tr>
<th>Period deviation</th>
<th>Number of pulsation detected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XMM-Newton EPIC PN photon counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

In sum

Pulsars
In SMC Mode

Jun Yang
Intro Library

Pulsar spin up/down
Pulse profile model

In sum

XMM-Newton EPIC PN photon counts
Cumulative # of pulsation detected

Spin Period (s)

<table>
<thead>
<tr>
<th>Delt. P/P</th>
<th>Cumulative # of pulsation detected</th>
</tr>
</thead>
</table>

| XMM-newton Obs | Chandra Obs | RXTE Obs |

<table>
<thead>
<tr>
<th>Period deviation</th>
<th>Number of pulsation detected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XMM-Newton EPIC PN photon counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Library of pulsars in the Magellanic Clouds

Observation overview

Propeller line (P-line) in Magellanic high mass X-ray binaries;

Did not find the pulsations below the P-line

\[L_{X,\text{min}} = L_0 \left(\frac{\mu}{10^{20} \text{ Gcm}^2} \right)^2 \cdot P^{-7/3} \]

\[L_{X,\text{gap}} = \frac{L_{X,\text{min}}}{167 \cdot 870562 \cdot P^{5/3}} \]

SXP 348
Pulsars in SMC & Model

Jun Yang

Into Library

Pulsars spin up/down

Pulse profile model

In sum

Make up

Graph

Axes:
- **X-axis:** Spin Period (s)
- **Y-axis:** dP/P and $\delta P/P$

Data Points:
- XMM-newton Obs
- Chandra Obs
- RXTE Obs

Legend:
- Green dots: XMM-newton Obs
- Blue dots: Chandra Obs
- Yellow dots: RXTE Obs

Graph Features:
- The graph displays a scatter plot with data points representing the spin period and its variations.
- The dP/P and $\delta P/P$ are plotted against the spin period.
- The data points are color-coded to distinguish between different observational datasets.
Pulsars In SMC & Model

Jun Yang

Into Library

Pulsars spin up/down

Pulse profile model

In sum

Make up

Makeup
Pulsars in SMC & Model

Jun Yang

Into Library

Pulsars: spin up/down

Pulse profile model

In sum

Make up

SXP 1323 Spin up: 0.0209 s/day
Pulsars In SMC & Model

Jun Yang

Into Library

Pulsars spin up/down

Pulse profile model

In sum

Make up

Luminosity (erg/s) vs. Spin Period (s)

\[L_{X,\text{min}} = L_0 (=2.0 \times 10^{37} \text{ erg/s}) \times \left(\frac{I}{10^{43} \text{ G cm}^2} \right)^2 \times P^{-7/3} \]
Astrosat

• Broadband Spectroscopic studies of X-ray sources