Opening new vistas with Sherpa

Tom Aldcroft
CXC Operations Science Support

CIAO Workshop
August 6, 2011
Generalized fitting package with a powerful model language to fit 1D and 2D data

Basic Sherpa

- Interactive (command line) usage
- Scripting using command syntax
- Data access with `show_*` and `print`

```python
sherpa> load_pha('acis_pha3.fits')
sherpa> set_source(xsphabs.abs1 * powlaw1d.p1)
sherpa> subtract()
sherpa> fit()
sherpa> show_fit()
```

Optimization Method: LevMar

- `name` = levmar
- `ftol` = 1.19209289551e-07
- `xtol` = 1.19209289551e-07
- `gtol` = 1.19209289551e-07
- `maxfev` = None
- `epsfcn` = 1.19209289551e-07
- `factor` = 100.0
- `verbose` = 0

Statistic: Chi2Gehrels

Fit: Dataset = 1
- `Method` = levmar
- `Statistic` = chi2gehrels
- Initial fit statistic = 6.83386e+10
- Final fit statistic = 37.9079 at evaluation 22
- Data points = 44
- Degrees of freedom = 42
- Probability [Q-value] = 0.651155
- Reduced statistic = 0.902569
- Change in statistic = 6.83386e+10
 - `p1.gamma` = 2.15852
 - `p1.ampl` = 0.00022484

This works very well much of the time, but ...
Doing more with Sherpa

Python Inside: Sherpa user interface and high-level functions are Python

- Sherpa provides an interface to let users:
 - Access the internal objects used within Sherpa
 - Easily define user model and user statistic functions
 - Use Sherpa as an imported library in your Python program
- Paradigm change – CIAO/Sherpa is not the environment, it is a powerful library tool in your Python analysis environment\(^1\).
- Move beyond short *scripts* to full-blown *programs*\(^2\).
- Real life examples:
 - Fit X-ray models to hundreds of Chandra L3 sources (including faint ones), put results in a database, and import to a google web app to browse the results.
 - Fit data where the errors are dominated by quantization (i.e. data are integerized)
 - Generate complex thermal models requiring parallel fitting using > 30 CPUs and a GUI fitting application

\(^1\)Sherpa can even run outside of CIAO! See http://cxc.cfa.harvard.edu/contrib/sherpa/

\(^2\)See http://www.astropython.org and http://python4astronomers.github.com for more about Python and astronomy
Topics

Take another swig of coffee and get ready for some code

- Getting data into Sherpa
- Digging into Sherpa: getting at the objects underneath
- Creating user models and user statistics functions
 - Using functions
 - Using classes (you too can write an OOP)
- Goodness of fit for low-count X-ray spectra
- Parallelization with MPI

Sit back and relax

- Deproject: a Sherpa extension module
- Keeping Chandra cool: a Sherpa success story
Getting data into Sherpa

- Sherpa has many ways of loading data and other things:

 sherpa-17> load_<TAB>
 load_arf load_bkg_arf load_filter load_pha load_state load_user_model
 load_arrays load_bkg_rmf load_grouping load_preferences load_staterror load_user_stat
 load_ascii load_colormap load_image load_psf load_syserror load_user_stat
 load_ascii_transform load_conv load_multi_arfs load_quality load_table
 load_bkg load_data load_multi_rmfs load_rmf load_table_model

- One of my favorites doesn't appear in any Sherpa thread\(^1\): `load_arrays()`
- This provides a generic way to load memory arrays as Sherpa datasets
- Example: ASCII file format not understood by Sherpa. Instead use `asciitable`\(^2\)

```
sherpa> load_data('csc.rdb[cols ra, dec]')
IOErr: opening file has failed with ERROR - Failed to open 'csc.rdb[cols ra, dec]'.

sherpa> import asciitable
sherpa> dat = asciitable.read('csc.rdb', Reader=asciitable.RdbReader)
sherpa> load_arrays(1, dat['ra'], dat['dec'], Data1D)
```

\(^1\) From the google search “sherpa load_arrays”
\(^2\) http://cxc.harvard.edu/contrib/asciitable
Getting data into Sherpa

- Didn't we just replace one line with three? But now we *own* the data!

```python
sherpa> dat = asciitable.read('csc.rdb')
sherpa> ra = dat['ra']
sherpa> dec = dat['dec']
Sherpa> dist = calc_dist(ra, dec, ra.mean(), dec.mean())
sherpa> load_arrays(1, dist, dat['mag'], Data1D)
```

- `load_arrays()` works for 2-D and PHA data as well

HINT: get help on CIAO functions by googling “ahelp <function>” or “ciao ahelp <function>”. This doesn't seem to work with bing.
Digging into Sherpa: getting the good bits

• Sherpa also has many ways of showing the current analysis state:

sherpa> show_<TAB>
show_all show_bkg_model show_conf show_data show_fit show_method show_proj show_source
show_bkg show_bkg_source show_covar show_filter show_kernel show_model show_psf show_stat

sherpa> load_pha('acis_pha3.fits')
sherpa> set_source(xsphabs.abs1 * powlaw1d.p1)
sherpa> subtract()
sherpa> fit()
Sherpa> show_fit()
Optimization Method: LevMar
name = levmar
ftol = 1.19209289551e-07
xtol = 1.19209289551e-07
gtol = 1.19209289551e-07
maxfev = None
epsfcn = 1.19209289551e-07
factor = 100.0
verbose = 0

Statistic: Chi2Gehrels
Chi Squared with Gehrels variance

Fit:Dataset = 1
Method = levmar
Statistic = chi2gehrels
Initial fit statistic = 31.5124
Final fit statistic = 31.5124 at evaluation 5
Data points = 1024
Degrees of freedom = 1021
Probability [Q-value] = 1
Reduced statistic = 0.0308642
Change in statistic = 8.81487e-07
abs1.nH 0.112892
pl.gamma 3.07627
pl.ampl 0.00011212

• Great for interactive analysis but what about using the results?

• OLD school
 • Run as a script and pipe output to a file
 • Write a separate script (perl?) to parse and store in a new table
 • Writing code to reliably parse all these tidbits is a very fun and interesting way to spend your day. NOT.

• Nice shiny way
 • Run as a python script
 • Directly access results and store in desired format .. or use python twitter API to immediately tweet the results.
Sherpa lets you get_* what you need:

digging into Sherpa: getting the good bits

sherpa> get_<TAB>
Display all 188 possibilities? (y or n)
get_analysis
get_areascale
get_arf
get_arf_plot
get_attribute
get_axes
get_axis
get_axis_range
get_axis_scale
get_axis_text
get_axis_transform
get_axis_visible
get_backscal
get_bkg
get_bkg_arf
get_bkg_chisqr_plot
get_bkg_delchi_plot
get_bkg_fit_plot
get_bkg_model
get_bkg_model_plot
get_bkg_plot
get_bkg_ratio_plot
get_bkg_resid_plot
get_bkg_rmf
get_bkg_source
get_bkg_source_plot
get_chisqr_plot
get_col
get_transform_matrix
get_col_names
get_colorbar
get_colorbar_border_visible
get_colorbar_visible
get_colvals
get_conf
get_conf_opt
get_conf_results
get_confidence_results
get_contour
get_contour_axis
get_contour_levels
get_contour_range
get_contour_visible
get_curve
get_curve_range
get_curve_visible
get_curve_xrange
get_curve_yrange
get_data
get_data_aspect_ratio
get_data_contour
get_data_contour_prefs
get_data_image
get_data_plot
get_data_plot_prefs
get_default_depth
get_default_id
get_delchi_plot
get_dep
get_dims
get_dmType
get_dmType_str
get_energy_flux_hist
get_error
get_exposure
get_filter
get_fit_contour
get_fit_plot
get_fit_results
get_frame
get_frame_border_visible
get_frame_scale
get_frame_visible
get_functions
get_grouping
get_histogram
get_histogram_range
get_histogram_xrange
get_histogram_yrange
get_image
get_image_range
get_image_visible
get_image_xrange
get_image_yrange
get_indep
get_int_proj
get_int_unc
get_kernel_contour
get_kernel_image
get_kernel_plot
get_key
get_key_names
get_keyval
get_label
get_label_text
get_line
get_method
get_method_name
get_method_opt
get_model
get_model_autoassign_func
get_model_contour
get_model_contour_prefs
get_model_image
get_model_pars
get_model_plot
get_model_plot_prefs
get_model_plot_type
get_model_type
get_num_par
get_num_par_frozen
get_num_par_thawed
get_number_cols
get_number_rows
get_object_coordinfo
get_object_count
get_object_visible
get_order_plot
get_par
get_photon_flux_hist
get_pick
get_pileup_model
get_piximg
get_piximg_shape
get_piximgvals
get_psf
get_psf_contour
get_psf_image
get_psf_plot
get_pyType
get_quality
get_rate
get_ratio_contour
get_ratio_image
get_ratio_plot
get_reg_proj
get_reg_unc
get_region
get_region_visible
get_resid_contour
get_resid_image
get_resid_plot
get_rmf
get SERVER_ID
get_source
get_source_contour
get_source_image
get_source_plot
get_source_visible
get_stat
get_staterror
get_syserror
get_transform
get_transform_matrix
get_transform_type
get_transform_visible
get_transform_window
get_window
get_window_title
get_xaxis
get_xaxis
get_xsabund
get_xsecsmo
get_xsecsect
get_yaxis
Digging into Sherpa: getting the good bits

- Most everything you get_*() will be a python object and that's the prize
 - Internally Sherpa uses hierarchical objects for most things
 - You can find and examine internal object attributes by <TAB> digging

```python
sherpa> load_pha(1, 'acis_pha3.fits')
sherpa> dataset = get_data(1)
sherpa> dataset
<DataPHA data set instance 'acis_pha3.fits'>
sherpa> dataset.<TAB>
Display all 159 possibilities? (y or n) n
sherpa> dataset.get_<TAB>
...
sherpa> counts = dataset.counts
sherpa> b = numpy.where(dataset.counts > 3)
sherpa> b
(array([ 14,  16,  30,  45,  97, 118]),)
scherpa> c = dataset.channel[b]
scherpa> e = dataset._channel_to_energy(c)
array([ 0.2117,  0.2409,  0.4453,  0.6643,  1.4235, 1.73])
scherpa> dat = asciitable.read('csc.rdb', Reader=asciitable.RdbReader)
scherpa> load_arrays(1, dat['ra'], dat['dec'], Data1D)
scherpa> dataset = get_data()
scherpa> dataset.y = dataset.x**2
sherpa> dataset.staterror = dataset.y / 20
```

- With some care you can manipulate the internal object attributes

numpy: core python numerical library

```text
where(): return indices where expr is True
```

Return selected elements from channel array

```text
I found this function just by <TAB> digging. The _ in front means it wasn't intended for external use but why not live dangerously.
Documentation? Who needs it.
```
Digging into Sherpa: source and fit results

- Now something more useful: examine source model parameters and fit results

```python
sherpa> source = get_source()
sherpa> source.parts
(<XSphabs model instance 'xsphabs.abs1'>,
 <PowLaw1D model instance 'powlaw1d.p1'>)

sherpa> for par in source.pars:
    print par.fullname, par.val, par.min, par.max, par.frozen

abs1.nH 0.112891604641 0.0 100000.0 False
p1.gamma 3.0762703235 -10.0 10.0 False
p1.ref 1.0 -3.40282346639e+38 3.40282346639e+38 True
p1.ampl 0.000112120110443 0.0 3.40282346639e+38 False

sherpa> fit = get_fit_results()
sherpa> print [x for x in dir(fit) if not x.startswith('_')]
['covarerr', 'datasets', 'dof', 'dstatval', 'extra_output', 'format', 'istatval',
 'message', 'methodname',
 'modelvals', 'nfev', 'numpoints', 'parnames', 'parvals', 'qval', 'rstat', 'statname',
 'statval', 'succeeded']
```
Digging into Sherpa: source and fit results

- Don't just examine. **Organize** and tabulate!

```python
import sqlite3
conn = sqlite3.connect('csc_fits.db')
c = conn.cursor()
c.execute('''create table fit_pars
              (source_name text, par_name text, par_val real)''')
for parname, parval in zip(fit.parnames, fit.parvals):
    c.execute("insert into fit_pars values (?, ?, ?)",
              (source.name, parname, parval))
conn.commit()
c.close()
```

ccosmos% sqlite3 csc_fits.db
SQLite version 3.3.6
Enter ".help" for instructions
sqlite> select * from fit_pars;
(xsphabs.abs1 * powlaw1d.p1)|abs1.nH|0.112891604640818
(xsphabs.abs1 * powlaw1d.p1)|p1.gamma|3.07627032349591
(xsphabs.abs1 * powlaw1d.p1)|p1.ampl|0.00011212011044343
User models with python functions

- Adding a user model defined with a python function is shockingly simple!

```python
def myline(pars, x):
    return pars[0] * x + pars[1]
load_user_model(myline, "myl")
add_user_pars("myl", ["m","b"])  
set_source(myl)
myl.m=30
myl.b=20
```

Sure, but any real model has to be written in C or Fortran, right? Not necessarily.

- Numerical processing with **NumPy** is in C so any vectorized calculations are fast.
- The **SciPy** library provides a large selection of optimized numerical algorithms using well known fortran and C numerical libraries.
- Prototype the user model in Python. If it's too slow then profile the code and convert the hot spots to C or C++.

But what about my existing C / Fortran model code? Google "sherpa user models".
User models with Python classes

- Frequently a user model function requires associated metadata (atomic data, table file names, non-fitted parameters, etc)
- This is a typical problem in fitting (remember Fortran COMMON blocks?)
- Python provides a very clean solution: **classes**

```python
class FITS_TableModel(object):
    """Simplest possible FITS table model. Table has two columns:
    kT : temperature
    spectrum : corresponding spectrum in an N-element array
    In this model the spectrum nearest in temperature is returned.
    The energy bins of the fitted spectrum is ignored here.
    """
    def __init__(self, filename):
        hdus = pyfits.open(filename)
        self.kT = hdus[1].data.field('kT')
        self.spectra = hdus[1].data.field('spectrum')
        hdus.close()

    def __call__(self, pars, x):
        kT = pars[0]
        i = numpy.searchsorted(self.kT, [kT])[0]
        if (kT - self.kT[i-1]) < (self.kT[i] - kT):
            i -= 1
        return self.spectra[i]

user_model_func = FITS_TableModel('plasma_spectra.fits')
load_user_model(user_model_func, "myspec")
add_user_pars("myspec", ["kT"])
set_source(myspec)
```

Ever wonder what's the deal with “object oriented programming”? Here it is. The object stores metadata.

Object initialization with “filename” via `__init__`. Read the FITS data and store within the object.

Here's the magic: the object created by the class can be called directly as a function and it will run the special `__call__` method.
Goodness of fit by simulation

- Measuring the *goodness of fit* is challenging for low-count spectra
 - “Is the X-ray emission thermal or non-thermal (power-law)?”
 - Cannot easily eye-ball the data and model fit
 - No simple analogs to reduced Chi^2 distribution for Cash (likelihood) statistic
 - Challenging, but not impossible, and worth the trouble
Goodness of fit by simulation

- Simulation provides a way to estimate whether the observed fit statistic would be unusual for an ensemble of data realizations of the source model\(^1\).

1. Fit real spectrum with model
2. Generate fake spectrum using best-fit model
3. Fit fake spectrum with model
4. Accept if fake fit pars are “close” to best-fit parameters
5. Iterate \(n_{\text{sim}}\) times
6. Plot distribution of fake fit statistics and compare to real
Goodness of fit by simulation

- Simulation provides a way to estimate whether the observed fit statistic would be unusual for an ensemble of data realizations of the source model\(^1\).

\[\text{Fit real spectrum with model}\]

\[\text{Generate fake spectrum using best-fit model}\]

\[\text{Fit fake spectrum with model}\]

\[\text{Accept if fake fit pars are “close” to best-fit parameters}\]

\[\text{Iterate } n_{\text{sim}} \text{ times}\]

\[\text{Plot distribution of fake fit statistics and compare to real}\]

\(^1\text{Warning: this algorithm is not statistician-approved and needs more testing.}\]
Goodness of fit by simulation

Model selection simulation:

- Generate a spectrum using a Raymond-Smith source model.
- Try to decide if a power-law model is consistent with the spectrum

```python
import numpy as np

n_sim = 2000
exposure0 = 200
spectype = 'raymond'

# Generate the simulated "real" data (Raymond-Smith plasma kT=1.5 keV)
set_source(1, "xsraymond.ray1")
ray1.kt = 1.5
ray1.norm = 3e-3
arf = unpack_arf('acis7s.arf')
rmf = unpack_rmf('acis7s.rmf')
fake_pha(1, arf=arf, rmf=rmf, exposure=exposure0)

notice(0.5, 8)
set_method('levmar')
set_stat('cash')
```
Goodness of fit by simulation

```python
# Model this spectrum with an unabsorbed power law
set_source(1, "powlaw1d.powl")
fit()
gamma0 = pow1.gamma.val
ampl0 = pow1.ampl.val

# Store results from initial fit of "real" data
fit_results = get_fit_results()
stat0 = fit_results.statval
flux0 = calc_energy_flux(lo=0.5, hi=8.0)

stats = np.zeros(n_sim)
gammas = np.zeros(n_sim)

for i in range(n_sim):
    # Reset parameter values to best fit and generate fake spectrum
    pow1.gamma = gamma0
    pow1.ampl = ampl0
    fake_pha(1, arf=arf, rmf=rmf, exposure=exposure0)

    # Fit and record statistics
    fit()
    stats[i] = calc_stat()
    gammas[i] = pow1.gamma.val
    print i
```
Goodness of fit by simulation

Select the simulations that were “close” to the best-fit gamma
ok = (gammas > gamma0 - 0.1) & (gammas < gamma0 + 0.1)
stats = np.sort(stats[ok])

Sort the statistics in order and rank the fit stat from the “real” data
n_stats = len(stats)
rank = np.searchsorted(stats, stat0)
percentile = float(rank) / n_stats
print 'fit stats (rank, n_stats, percentile) : {0} {1} {2:.4f}'.format(
 rank, n_stats, percentile)

Make some plots
bin_vals, bin_edges = np.histogram(stats, bins=50)
bin_lefts = bin_edges[:-1]
bin_rights = bin_edges[1:]
add_window()
add_histogram(bin_lefts, bin_rights, bin_vals)
add_curve([[stat0, stat0], [0, bin_vals.max()]])
set_curve(['symbol.color', 'red',
 'line.color', 'red',
 'symbol.style', 'circle'])
set_plot_title('{0} Percentile={2:.4f}'.format(spectype, exposure0,
 percentile))
set_plot_xlabel('Cash fit statistic')
set_plot_ylabel('Number')
print_window('{0}_hist_{1}.png'.format(spectype, exposure0))
Goodness of fit by simulation

70 counts
Confidence ~0.94

"Power-law model is not a likely source for the spectrum"
(truth = Raymond-Smith kT=1.5)
Parallelization

- For some problems with large datasets or computationally intensive models it may be possible to improve fit performance by using multiple processors.
- Processors can be on the same machine or in a networked cluster.
- Sherpa already takes advantage of multiple cores in projection and conf.
- Improving fit performance is tricky for convolved models but easy for models that can be split in data space\(^1\).

\(^1\)Splitting in data space is just one of many possible strategies
Parallelization with MPI

- Can do parallel processing using C and Python implementations of the widely used Message Passing Interface standard.

```python
class CalcModel(object):
    def __init__(self, x, y):
        msg = {'cmd': 'init', 'x': x, 'y': y}
        comm.bcast(msg, root=MPI.ROOT)

    def __call__(self, pars, x):
        comm.bcast(msg={'cmd': 'calc_model', 'par': par}, root=MPI.ROOT)
        return numpy.ones_like(x)    # Dummy value of correct length

def calc_staterror(data):
    return numpy.ones_like(data)

class CalcStat(object):
    def __call__(self, data, model, staterror=None, syserror=None, weight=None):
        msg = {'cmd': 'calc_statistic'}
        comm.bcast(msg, root=MPI.ROOT)
        fit_stat = numpy.array(0.0, 'd')
        comm.Reduce(None, [fit_stat, MPI.DOUBLE], op=MPI.SUM, root=MPI.ROOT)
        return fit_stat.tolist(), numpy.ones_like(data)

comm = MPI.COMM_SELF.Spawn(sys.executable, args=['fit_worker.py'], maxprocs=nproc)
load_arrays(1, x, y)
load_user_model(CalcModel(x, y), 'mpimod')
add_user_pars('mpimod', parnames)
set_model(1, mpimod)
load_user_stat('mpistat', CalcStat(), calc_staterror)
set_stat(mpistat)
fit(1)
```
Parallelization with MPI

The fit_worker code just waits around to get instructions.

```python
def calc_model(pars, x):
    # calculate the model values
    return model

comm = MPI.Com.Get_parent()
size = comm.Get_size()
rank = comm.Get_rank()

while True:
    msg = comm.bcast(None, root=0)
    if msg['cmd'] == 'stop':
        break
    elif msg['cmd'] == 'init':
        i = numpy.int32(numpy.linspace(0.0, len(msg['x']), size+1))
        i0 = i[rank]
        i1 = i[rank+1]
        data_x = msg['x'][i0:i1]
        data_y = msg['y'][i0:i1]
    elif msg['cmd'] == 'calc_model':
        model = calc_model(msg['pars'], data_x)
    elif msg['cmd'] == 'calc_statistic':
        fit_stat = numpy.sum((data_y - model)**2)
        comm.Reduce([fit_stat, MPI.DOUBLE], None, op=MPI.SUM, root=0)

comm.Disconnect()
```
Deproject is a CIAO Sherpa extension package to facilitate deprojection of two-dimensional annular X-ray spectra to recover the three-dimensional source properties.

- The deproject module creates a framework for manipulation of a stack of related input datasets and their models.
- Most of the functions resemble ordinary Sherpa commands (e.g. set_par, set_source, ignore) but operate on a stack of spectra.
Keeping Chandra cool: a Sherpa success story
Keeping Chandra cool: a Sherpa success story
Keeping Chandra cool: a Sherpa success story

SOT PSMC model

- Key inputs to model are pitch angle, SIM-Z position and ACIS power.
- Total of 13 model coefficients.

\[
C_1 \frac{dT_1}{dt} = U_{01}(T_0 - T_1) + U_{12}(T_2 - T_1)
\]

\[
C_2 \frac{dT_2}{dt} = P_p + U_{12}(T_1 - T_2)
\]
Keeping Chandra cool: a Sherpa success story

Calibration: Sherpa

Predictions for mission planning
Conclusions

- Sherpa provides next-generation capability through Python scripting
- Your time investment to learn Sherpa will pay off
- Learn Python!
 - http://python4astronomers.github.com
 - Python + analytic skills = Job security