

Analysis of Extended Sources

John C. Houck

<houck@space.mit.edu>

Web Documentation

http://cxc.harvard.edu/ciao/guides/esa.html

- ACIS blank-sky background
- Point-source detection
- Exposure maps
- Weighted responses
- Radial profiles
- Image fitting

Important Issues

- 1. Background
 - remove background flares, point-sources
 - consider local background measurement vs. ACIS blank-sky
- 2. Position-dependent response
 - usually extract *PI* spectra, not PHA
 - consider weighted responses

Exclude high background intervals:

- extract light-curve [dmextract]
- determine *GTI*s [lc_sigma_clip()]
- filter [dmcopy]

Filtered Counts Image

Counts

- reprocess [acis_process_events]
- apply custom filters (flares, bad pixels, ...) [dmcopy]
- remove point sources [wavdetect]

Remember...

Counts and photons are not the same! (QE < 1)

Flux Images

(For details, see Davis, 2001, ApJ, 548, 1010)

When mirror area & PSF vary slowly with position,

$$C(h, \hat{\mathbf{p}}) = \tau_{\text{eff}} \int dE \, \mathcal{A}(h, E, \hat{\mathbf{p}}) \, \mathcal{S}_{PSF}(E, \hat{\mathbf{p}}).$$

If $A \approx constant \ within \ \Delta E$ then, summing over Δh , ΔE :

"Flux"
$$\equiv \int_{\Delta E} dE \, \mathcal{S}_{PSF}(E, \hat{\mathbf{p}}) \approx \frac{1}{\tau_{eff}} \frac{C(\Delta h, \hat{\mathbf{p}})}{\mathcal{A}(\Delta h, \Delta E, \hat{\mathbf{p}})}.$$

 $\mathcal{A}(\Delta h, \Delta E, \hat{\mathbf{p}})$ is the exposure map.

Spectrum-Weighted Instrument Map

Approximating the effective area, A(E), as piecewise constant,

$$C(h) = \tau \sum_{k} \int_{\Delta E_{k}} A(E)s(E)dE \approx \left(\tau \sum_{k} A_{k} w_{k}\right) \int_{E_{\min}}^{E_{\max}} s(E)dE$$

using weights defined by: $w_k \equiv \frac{1}{s_{\text{tot}}} \int_{\Delta E_k} s(E) dE$ where $1 = \sum_k w_k$.

Exposure Map $\mathcal{A}(\Delta h, \Delta E, \hat{\mathbf{p}})$:

• mkexpmap projects the instrument maps onto the sky and includes dither.

"Flux"

- extract counts image for ΔE of interest [dmcopy]
- Divide counts by exposure map:

$$\mathcal{F}(\Delta E, \mathbf{\hat{p}}) = \frac{C(\Delta h, \mathbf{\hat{p}})}{\tau_{\text{eff}} \mathcal{A}(\Delta h, \Delta E, \mathbf{\hat{p}})}$$
[photons s⁻¹ cm⁻²]

[dmimgthresh, dmimgcalc]

Surface Brightness Profiles

Elliptical Annuli

In i^{th} elliptical annulus, compute the surface brightness,

$$S_i = \frac{\sum_{k \in i} C_k}{\tau_{\text{eff}} \sum_{k \in i} A_k}.$$

"Flux"

SB Profile Image

Flux residual

Overlay Radio Contours

[ds9]

- generate & save radio contours (RA, DEC)
- load contours & overlay on X-ray image
- Alternatively, use images as RGB components.

Spectral Analysis

- choose sky region, Ω
- extract source PI spectrum, $C_{\Omega}(h)$ [dmextract]
- compute ARF, $A_{\Omega}(E)$ [mkarf/mkwarf]
- compute RMF, $R_{\Omega}(h, E)$ [mkacisrmf]
- extract background PI spectrum, B(h) (local vs. ACIS blank-sky background)
- Fit model $S_{\Omega}(E) \to \min(\chi^2)$

Response Spatial Variation

Extract spectrum, $C_{\Omega}(h)$, from sky region, Ω , that spans several calibrated detector regions, $\{\sigma\}$.

$$C_{\Omega}(h) = B(h) + \tau_{\text{eff}} \int dE \ R_{\Omega}(h, E) \ A_{\Omega}(E) \ S_{\Omega}(E)$$

Response Spatial Variation

Contamination (ACIS-7ARF)

CTI (ACIS-3 FI-RMF)

Weighted Responses

 $R_{\Omega}(h, E)$ and $A_{\Omega}(E)$ can be defined in terms of a weight map (WMAP).

- 1. obtain WMAP e.g. from dmextract
- 2. weighted RMF from mkacisrmf
- 3. weighted ARF from mkwarf

Default WMAP does not account for bad pixels:

obsid 5827, ACIS-3, box(3514,4214,2,2,128), fracexpo=0.892