CIAO Workshop AAS 235/Honolulu 2020 Jan 3-4

Statistics for High-Energy Astronomy

Vinay Kashyap

CHASC/CXC/CfA

ASK A STATISTICIAN

Chandra Booth, CfA Street, Exhibit Hall Afternoons

Chat with expert statisticians and astrostatisticians about astronomical data and analysis challenges. See schedule and topic availability below.

Sign up at

http://hea-www.harvard.edu/AstroStat/aas235/ask.html

Sun Jan 5 1:30-3pm	Chad Schafer (CMU) Herman Marshall (MIT)	Statistical inference, Approximate Bayesian Computation, Deep Learning, Machine Learning, non-parametrics, Bayesian parametrics, calibration and systematics
Mon Jan 6 1:30-3pm	Bo Ning (Yale) Gwen Eadie (Toronto)	Bayesian analysis, Bayesian inference, exoplanet detectability, high-dimensional and non-parametric methods
Tue Jan 7 3:30-5:30pm	Katy McKeough (Harvard) Rafael Martinez-Galarza (CfA)	Outlier detection, supervised classification (neural nets, random forests), hierarchical Bayes, Gaussian Linear Models, deconvolution, Ising models
Wed Jan 8 1:30-3pm	Herman Marshall (MIT) Rafael Martinez-Galarza (CfA) et al.	MCMC, source detection, Type I & II errors, upper limits, Bayesian analysis, calibration and systematics, classification, outliers

Outline

A mechanism to understand how much your data is telling you. Cannot blindly surrender scientific judgement.

data summaries:statistics :: astrometry:astrophysics

- 1. Photon Counts and the Poisson distribution
- 2. Gaussian
 - 1. Likelihood and χ^2
 - 2. Poisson vs Gaussian
 - 3. Error propagation
- 3. Fitting
 - 1. Best fit
 - 1. error bars
 - 2. goodness of fit
 - 3. cstat
- 4. CIAO/Sherpa

1. Counts

- * ACIS and HRC are photon counting detectors. Events are recorded as they arrive, usually sloooowly
- * What does this imply?

1. Poisson Likelihood

- * $p(k|\lambda) = (1/k!) \lambda^k e^{-\lambda}$
 - * The probability of seeing k events when λ are expected
 - * e.g., λ = count rate × time interval $\equiv r \cdot \Delta t$
- * mean, $\mu = \sum_{k} k p(k|\lambda) = \lambda$
- * variance, $\sigma^2 = \overline{k^2} \overline{k}^2 = \lambda$

2. Gaussian

- * A Gaussian distribution is convenient
 - * Symmetric, ubiquitous (because of the Central Limit Theorem), easy to handle uncertainties
 - * $N(x;\mu,\sigma^2) = [1/\sigma\sqrt{2\pi}] e^{-(x-\mu)^2/2\sigma^2}$

2.1 Gaussian likelihood

- * Probability of obtaining observed data given the model $p(x|\theta,\sigma_{\theta}) dx = N(x;\theta,\sigma_{\theta}^2) dx$
- When you have several data points

$$\begin{split} p(\{x_k\} | \pmb{\theta}_i) &= (2\pi)^{-N/2} \; \Pi_k \; \sigma_k^{-1} \; e^{-(x_k - \mu_k)^2 / 2\sigma_k^2} \\ &= (2\pi)^{-N/2} \; (\Pi_k \; \sigma_k^{-1}) \; exp[-\sum_k (x_k - \mu_k)^2 / 2\sigma_k^2] \end{split}$$

* log Likelihood $\propto -\sum_{k} (x_k - \mu_k)^2 / 2\sigma_k^2$

2.2 Poisson -> Gaussian

- Variance of Poisson is = mean
- * As $\lambda \uparrow$ Pois(k| λ) \rightarrow N(k; λ ,($\sqrt{\lambda}$)²)
- * Convenient!

2.3 Gaussian Error Propagation

- * How to propagate uncertainty from one stage to another if g=f(x), and σ_x is known, what is $\sigma_g = ?= f(\sigma_x)$
- * Simple case: if everything is distributed as a Gaussian, and has well-defined means and standard deviations, then at "best fit" values a_i , $g=g(a_i)$

$$\sigma^2_g = \sum_i \sum_k (g_k(a_i + \delta a_i) - g_k(a_i))^2 / N$$

and expand as Taylor series to get

$$\sigma^{2}_{g} = \sum_{i} \sum_{j} (\partial g/\partial a_{i})(\partial g/\partial a_{j}) \sigma_{a_{i}a_{j}}$$

or ignoring correlations amongst the $\{a_i\}$, $\sigma_{a_i a_j} = \sigma_{a_i}{}^2 \delta_{ij}$

$$\sigma^2_g \approx \sum_i (\partial g/\partial a_i)^2 \sigma^2_{a_i}$$

2.3 Error Propagation

$$g = g(a_i)$$

$$\sigma^2_g = \sum_i \left(\partial g/\partial a_i\right)^2 \, \sigma^2_{a_i}$$

$$g = C \cdot a$$

$$\rightarrow \sigma_g = C \cdot \sigma_a$$
 uncertainties scale

$$g = ln(a)$$

$$\rightarrow \sigma_g = \sigma_a/a$$
 converts to fractional error

$$g=1/a$$

$$\rightarrow \sigma_g = (1/a^2) \ \sigma_a \equiv (g/a) \ \sigma_a$$

$$\Rightarrow \sigma_g/g = \sigma_a/a$$
fractional errors stay as they are

$$g = a + b$$

 $\rightarrow \sigma^2_g = \sigma^2_a + \sigma^2_b$
errors square-add

3.1 Fitting: Best-fit

- * The best fit is one that maximizes the likelihood
- * e.g., linear regression $y_i = \alpha + \beta x_i + \epsilon$

solve by finding extremum of log likelihood

$$lnL \propto \sum_{k} (y_k - \alpha - \beta x_k)^2$$

$$\partial ln L/\partial \alpha = \partial ln L/\partial \beta = 0$$

$$\Rightarrow \hat{\beta} = \text{Cov}(x,y)/\text{Var}(x) \equiv \rho(x,y)\sqrt{\text{Var}(x)/\text{Var}(y)}, \text{ and } \hat{\alpha} = \overline{y} - \hat{\beta} \overline{x}$$

Notice notation:

\bar and \hat to indicate sample averages and best-fit values

Γρεεκ letters for model quantities, Roman for data quantities

3.1.1Error Bars

* Covariance errors aka curvature errors aka inverse of the Hessian

For Gaussian, $\partial^2 \ln L/\partial x^2 \propto 1/\sigma^2$ — similarly, compute curvature at best fit and return its inverse as the error

- + easy
- very approximate
- $~~ ~~ \Delta \chi^2$

Difference from best-fit χ^2 value is itself a χ^2 distribution with dof=1, so look for percentiles of that distribution:

$$\Delta \chi^2 = +1 \equiv 68\% (1\sigma)$$

$$\Delta \chi^2 = +2.71 \equiv 90\% (1.6\sigma)$$

- + better than curvature
- gets complicated quickly if parameters are correlated

3.2 Fitting: Goodness-of-fit

- * How good is the model as a description of your data?
- * How can you tell when you do have a "good" fit?
- * Recall the log Likelihood 2× its –ve is called the chi-square,
 - * $\chi^2 = \sum_k (x_k \mu_k)^2 / \sigma_k^2$
 - * and its distribution describes the probability of getting (x_k,y_k) to match "similarly" for several bins
- * When observed $\chi^2 \sim \text{dof} \pm \sqrt{2} \sqrt{\text{dof}}$, model is doing excellent job of matching the data. The farther it is from this range, the less likely it is that the model is a good description of the data
 - * But always use your judgement, because this is a probabilistic rule!
 - * Watch out for how σ^2 is defined (model variance is better)

3.3 Fitting: cstat

- * Poisson log Likelihood: $-ln\Gamma(k+1) + k \cdot ln\lambda \lambda$
- * Apply Stirling's approximation, $ln\Gamma(k+1)=klnk-k$
 - * lnPoissonLikelihood = $k \cdot (ln\lambda lnk) + (k \lambda)$
- * Just as χ^2 is -2lnLikelihood,
 - * cstat = $2\sum_{i} (M_i D_i + D_i \cdot (lnD_i lnM_i))$
 - * where Di are observed counts, and Mi are model predicted counts in bin i
- * Watch out: only asymptotically χ^2 , not quite the Poisson likelihood, 0s are thrown away, background must be explicitly modeled
- * unbiased for low counts than χ^2 , asymptotically χ^2 , rudimentary goodness-of-fit exists (Kaastra 2017, A&A 605, A51)

[AnetaS] https://cxc.cfa.harvard.edu/ciao/workshop/jan20/cstat_vs_chisq_SimsNotebook.ipynb
[AnetaS] https://cxc.cfa.harvard.edu/ciao/workshop/jan20/data_for_cstat_vs_chisq_SimsNotebook.tar.gz

Fig. 7.3 Distributions of a photon index parameter γ obtained by fitting simulated X-ray spectra with 6000 counts and using the three different statistics: S_{Pearson}^2 , S^2 and C (i.e. the Poisson likelihood) statistics. The true value of the simulated photon index is marked with a dashed line and it was set at $\gamma = 1.28$

Fig. 7.3 Distributions of a photon index parameter γ obtained by fitting simulated X-ray spectra with 60 000 counts and using the three different statistics: S_{Pearson}^2 , S^2 and C (i.e. the Poisson likelihood) statistics. The true value of the simulated photon index is marked with a dashed line and it was set at $\gamma = 1.28$

4. Statistical Tools in CIAO/Sherpa

- * fit: non-linear minimization fitting
- * **projection/conf/covar**: uncertainty intervals and error bars
- * bootstrap/sample_flux: with replacement/parametric bootstrap to get parameter draws/model fluxes
- * resample_data: to get bootstrap distribution of model parameter draws when data errors are asymmetric
- get_draws: MCMC engine pyBLoCXS (Bayesian Low-Counts X-ray Spectral analysis; van Dyk et al. 2001, ApJ 548, 224)
- * calc_mlr, calc_ftest: model comparison via LRT/F-test
- * plot_pvalue, plot_pvalue_results: to do posterior predictive p-value checks (Protassov et al. 2002, ApJ 571, 545)
- * glvary: light curve modeling (Gregory & Loredo 1992, ApJ 398, 146)
- * celldetect/wavdetect/vtpdetect/mkvtpbkg: source detection in images
- * aprates: Bayesian aperture photometry (Primini & Kashyap 2014, ApJ 796, 24)
- * the python interpreter in Sherpa gives access to python libraries, and can be used to call upon packages and libraries in R, which are written by statisticians for statisticians