Effective Areas

Herman L. Marshall Nov. 17, 2014

Effective Area Overview

- Geometric Area (entrance annuli strut area = A_g)
- Two mirror bounces (R_{Ir}²)
- Grating Dispersion Efficiency (T_{TG})
- ACIS/HRC Optical Blocking Filter (T_{AI} * T_{lexan})
- ACIS detector quantum efficiency (T_{contam}Q_{ACIS})
 - Absorption by SiO₂ dead layer, gate structure (FI)
 - Interaction probability in 1 micron thick Si
- HRC detector quantum efficiency (QHRC)
- Result: A_{eff} = A_g R_{Ir}² [T_{TG}]T_{AI} T_{lexan} [Q_{ACIS}][Q_{HRC}]
- Also: HRMA overlayer, PSF, OSIP, chip gaps, bad pixels

Mirror Reflectivity (CXRO)

Mirror Reflectivity (CXRO)

HRMA Calibration

- Measured at MSFC
- Calibrated SSD and Prop. counters used
- Emission line source with various materials
- Empirical correction needed, still not understood
- See POG for details

ACIS EA (with contamination)

ACIS EA (with contamination)

HETG Schematic

- Two types of gratings on HETGS
- Au bars stand on plating base, on polyimide

HETGS Effective Area

HETGS Effective Area

Internal Cross-cal of HETGS

HRC Effective Area

HRC Effective Area

Cross-Cal with XMM

IACHEC: International Astronomical Consortium for High Energy Calibration

Defining High Energy Calibration Standards and Procedures

IACHEC

- Annual international meetings
 - Started by 2 largest X-ray groups (Chandra & XMM)
 - First meeting in Iceland in 2006
 - Support comes from projects (XMM, Suzaku, etc.)
 - Next meeting: Beijing, PRC
- Meetings involve reports and working groups
- All major X- & gamma-ray missions represented
- 35-45 attendees/meeting, 70% give talks
- 9 papers published (2008-14), several in progress
- URL: http://web.mit.edu/iachec/ with Wiki

What IACHEC Does

- Reviews ground calibration plans for new missions
 - Previous meetings: NuSTAR, Swift,
 - This year: Astro-H, eROSITA
- Reviews flight calibration plans and results
 - Investigate optics and detector physics
 - Examine methods, systematic errors
- Define new calibration standards
 - Characterize sources physically
 - Compare & publish results from different missions
- Arrange coordinated observations
- Consider infrastructure: statistics, archives

Cross-Cal with 1E0102

Contamination

Herman L. Marshall Nov. 17, 2014

Contamination Overview

- 1999: Chandra Launch
- 2000: Anomalous C-K edge LETG only?
- 2001: Contaminant thickens
- 2002: Composition determined (COF), edge
 NEXAFS indicates C-C single bonding
- 2003: Spatial variation found: thin at FoV center
- 2004: Fluffium invented as LETG/ACIS and cal source disagree; new model released
- 2010: Deposition accelerates, Gaussium replaces fluffium

The Anomalous C-K Edge

The Model

The Model

As it is now...

As it is now...

Cluster Measurements

Spatial Variation

Composition Changes

Constant Fluorine/Carbon

ACIS Fits to 1E0102

S3, ObsID 15555, C-stat=223.566, dof=80, Q-stat=225.8, reduced Q stat=2.82

ACIS Fits to 1E0102

IACHEC E0102 model + O-K edge S3, ObsID 15559, C-stat=148.554, dof=79, Q-stat=151.1, reduced Q stat=1.91

1E0102 Line Fluxes

1E0102 Line Fluxes

Possible Edge Residuals

Contamination Summary

- It is mostly made of C, smattering of F & O
 - Origin is unknown, composition doesn't match any on-board substance
 - About the same on ACIS-I and ACIS-S
 - Thicker at detector edges
- Optical depth at 700 eV is now about 1.5 and climbing
 - Effect at 1 keV is noticeable
 - Time dependence is not predictable
- Model is not completely physical
- Uncertainties in exact shape of correction remain