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Low-energy cosmic rays 
•  Accelerated ions couple poorly to radiation 

 - proton bremsstrahlung is reduced by me/mp 

 - ditto synchrotron radiation etc. 
 - γ-ray cross-sections have energy thresholds of order  
 10 MeV 

•  Such particles nevertheless can have significant energy 
and momentum content 

•  Charge-exchange reactions might reveal them (Orrall & 
Zirker 1976) via Ly-α wings 



Charge-exchange reactions 
•  Charge-exchange reactions in astrophysics have two 

main channels 
 - Radiative decay (Aurora, comets…) 
 - Energetic neutral atoms (Ring current, heliopause, 
solar flares…) 

•  The ENA observations of solar flares (Mewaldt et al. 
2009) reflect 2-5 MeV primary protons 

•  Here I discuss radiative-decay emission from 
comparable α-particles 



Discovery? 



Discovery? 

Hβ Hα

Vegard, 1939 



Auroral substorm Titan 

Heliopause 

Energetic Neutral Atoms in the Heliosphere 



Charge-exchange physics 
•  The relatively abundant He-like and H-like states of the 

CNO elements give a resonant boost for charge 
exchange in the vicinity of 1 MeV 

•  At some level, we should therefore see the He II 304 Å 
and H I 1216 Å line wings, and directly remote-sense the 
accelerated particles at energies below the γ-ray 
production thresholds 

•  Kahler & Ragot (2008, 2009) have discussed related 
remote-sensing ideas 

•  The Mewaldt et al. (2009) observation of ENAs confirms 
the basic physical idea for charge-exchange physics 



Particle precipitation in flares 

Plot from Svestka (1970) showing 
the height of optical depth unity in 
the solar atmosphere, in 
comparison with proton range  

Plot from Simnett & Haines (1990), 
suggesting electrodynamic effects in 
flare footpoint sources excited by ion 
flows 

The acceleration of heavy particles in the corona, either as ions or 
as a neutral (e.g., MHD) flow, should lead to interactions in the 
partially ionized chromospheric layers 



EVE line profiles 
He II 303.783
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The EVE 304 Å line time series (left) and line profile (right) 
for SOL2011-02-15. The lower figures show the flare 
excess light curve and profile. This line has both an 
impulsive-phase and a gradual-phase component. 

Total 

Flare excess 



Alpha particles in the chromosphere 
SOL2010-06-12
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Prediction from Peter et al. (1990) 
for a weak particle beam (106 erg/
cm2 sec) 

EVE observations from Hudson et 
al. (2012) for X-class flares with 
strong beams (>1010 erg/cm2 sec?). 
Dashed lines at 1% peak of line in 
flare excess, impulsive phase 



Conclusions for chromosphere 
•  The signature of the charge-exchange reaction leading 

to He II Ly-α line (304 Å) – a red-wing excess – is 
systematically not present in major flares 

•  This is a surprise, given the presence of strong γ-ray 
emission from such flares; we know that the particles are 
there and that they interact in a thick target. 

•  The theory involves several strong assumptions, and 
needs to be re-done more realistically 

•  Future imaging spectroscopy will be much more 
sensitive than EVE, and the Orrall-Zirker effect must be 
found. We should not be pessimistic about this! 



Alpha particles in the solar wind 

•  The same charge-exchange mechanism will produce a 
signature from the point of acceleration, e.g., in a CME-
driven shock 

•  Mewaldt et al. (2009) have clearly detected few-MeV 
neutral atoms (ENAs) from a flare – related physics 

•  The detection of broadened He II emission should 
pinpoint the acceleration site and determine the low-
energy particle distribution function (~1 MeV/nucleon) 



Cross-sections 

Cross-sections for charge exchange on He I (pale blue), O VI (red), N V 
(gold), and C IV (dark blue), weighted according to Mazzotta et al. 
ionization equilibria at a “freezing-in” temperature of 1.5 MK, for coronal 
abundances. CNO theory from Kuang, 1992 (ground state only), and He 
from Mancev, 2003. The peak resonant energy increases monotonically 
with Z. The cross-sections are small, but the α particles may be numerous 

Mewaldt et al 



“Theory” 
•  Cross-section σ ~ 10-22 cm2 
•  Column density ξ ~ 1017 cm-2 
•  α particle number N ~1035 

Photon fluence @ 1 AU ~ N ξ σ / 4 π AU2 

                 ~ 103 photons 



An EVE search - I 

This is the most energetic particle event of the current solar cycle and of 
the EVE database. The parent flare is SOL2012-01-23 (M8.7, N28W21). 
In this position, a shock wave vertically above the flare site should be in 
the EVE field of view. 



An EVE search - II 
Time series of EVE spectral 
irradiances at line center (center 
panel) and at +- 1.2, 2.4 Å in the 
blue and red wings (the flare 
excess). These correspond to 
maximum Doppler shifts for 1-2 
MeV/nucleon in the line of sight. 

There is a weak signature of line 
broadening, but it is roughly 
symmetrical and does not coincide 
in time with the expected arrival the 
shock at a few R (e.g.,Kahler, 
1994). Instrumental line broadening 
in EVE needs to be considered too. 
This is a possible detection of the 
effect, but is not certain. 
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Conclusions for corona 
•  We do not see a (strong) signature of charge exchange 

in the most energetic SEP event to date. 
•  For the cross-sections shown above, and for coronal 

column densities of 1017 cm-2, assuming no trapping in 
the shock region, it is unlikely theoretically that the 
detected signal is from charge exchange. 

•  An imaging instrument with spectral resolution λ/Δλ ~ 
3000 at 304 Å, observing as a coronagraph, should have 
sufficient sensitivity to see the charge-exchange effects 
and we strongly recommend its development. 



Literature 
•  Orrall & Zirker (Ap J 208, 816, 1976) introduced the idea of charge-

exchange reaction leading to hydrogen Ly-α red wing enhancement
•  Canfield & Chang (ApJ 295, 275, 1985) extended of Orrall-Zirker idea to 

intense beams 
•  Peter et al. (ApJ 351, 317, 1990) followed up the idea for the He II Ly-α 

line (304 Å) 
•  Woodgate et al. (Ap J 397, 95, 1992) possibly detected the H Ly-α red 

wing in a stellar flare 
•  Brosius (ApJ 555, 435, 2001) found no evidence for an H Ly-α red wing 

via CDS observations of a C-class flare 
•  Hudson et al. (ApJ 752, 84, 2012) used EVE observations of many X-

class flares and did not detect the Orrall-Zirker effect via the He II Ly-α 
line (304 Å) red wing  



More slides 



Mewaldt et al 2009 



Mewaldt et al. Figures (II) 

• The HET counts resemble those expected from neutron decay 
• The LET spectrum appears to steepen > 5 MeV 



EVE Doppler sensitivity 
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“Fe Cascade” 
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SOL2012-03-07 (X5.3) 


