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1. Motivation

In Level 3 pipeline processing of the Chandra archive, source detection is currently performed

by wavdetect (Freeman et al. 2002). The primary output product of wavdetect is a list of elliptical

regions indicating the position and extent of each detected source. Unfortunately, the wavdetect

source positions often are not precisely centered on the corresponding count distribution and the

point source region sizes do not smoothly track the PSF. The purpose of this memo is to describe

a more reliable algorithm for defining elliptical source regions for automatically detected sources.

The algorithm described in §2 was derived in part from the techniques described by Damiani et al.

(1997).

2. Algorithm

The 2-D correlation integral of a function w(x, y;α) with another function f(x, y) may be

written in the form

W (x, y;α) =

∫ X

−X

∫ Y

−Y
dx′dy′ w(x′ − x, y′ − y;α) f(x′, y′), (1)

where the region of interest is |x| ≤ X and |y| ≤ Y and where α represents a vector of parameters.

To detect sources in an image, it is of interest to consider the correlation integral of the image

with an elliptical “Mexican-Hat” function which may be written in the dimensionless form

w(x, y;α) ≡
(

2 − ρ2
)

exp
(

−ρ2/2
)

, (2)

where

ρ2 ≡ 1

a2
1

(x cosφ+ y sinφ)2 +
1

a2
2

(−x sinφ+ y cosφ)2 (3)

and α = (a1, a2, φ).

In this context, the Mexican-Hat function is often called a wavelet and the associated correlation

integral is often called a wavelet transform. A similar transform is an important component of

wavdetect.
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When f(x, y) contains a single elliptical Gaussian peak with position, size and orientation

specified by the parameters (x0, y0, σ1, σ2, φ0), the quantity

ψ(x, y;α) ≡W (x, y;α)/(a1a2)
1/2 (4)

has a maximum at (x0, y0) for ai = σi

√
3 and φ = φ0 (Damiani et al. 1997)1. It follows that

one can determine the position, size and orientation of the elliptical Gaussian peak in f(x, y) by

determining the five parameters that maximize ψ. For simplicity, I will refer to this technique for

determining source region parameters as Mexican-Hat Optimization (MHO).

To see the effect of a linear background, consider the value of ψ0(α) ≡ ψ(x0, y0;α) when

f(x, y) has the form

f(x, y) = c0 + c1x+ c2y + c3xy + S(x− x0, y − y0), (5)

where the ck are constants and where S(x, y) is a peaked function representing a source. Without

loss of generality, one can choose coordinates in which the peak is centered at the origin and aligned

with the coordinate axes so that φ = 0. In this coordinate system,

ψ0(α) = W (0, 0;α)/(a1a2)
1/2

=
1

(a1a2)1/2

∫ X

−X
dx

∫ Y

−Y
dy

{

[

2 − x2/a2
1 − y2/a2

2

]

exp

(

− x2

2a2
1

)

exp

(

− y2

2a2
2

)}

× [c0 + c1x+ c2y + c3xy + S(x, y)] , (6)

where the limits of integration have been chosen to be symmetric about the origin. Because the

quantity in braces is an even function of x and y, terms linear in x and y vanish. The factor

multiplying c0 can be expressed analytically as a sum of terms involving error functions and terms

∝ exp(−X2/2a2
1) and ∝ exp(−Y 2/2a2

2) (see Freeman et al. 2002). The error function terms cancel

and, in the limit that X ≫ a1 and Y ≫ a2, the exponential terms rapidly approach zero. It follows

that ψ0(α) is dominated by the peaked function, S(x, y), and is insensitive to the presence of a

linear background.

3. Implementation

In practical applications, f(x, y) is usually an image of a source and has discrete pixel values

fmn at each sky position (xm, yn). Equation (1) should then be expressed as a discrete sum of the

form

W (xi, yj ;α) =
∑

m,n

wmn(xi, yj ;α) fmn, (7)

where the wmn(α) are determined by integrating w(x, y,α) over the area of each pixel and where the

sum extends over all pixels of the image. Integration of w(x, y,α) from equation (2) does not yield

1When f(x, y) contains a circular disk of radius R with constant surface brightness, ψ has a maximum at (x0, y0)

for a1 = a2 = R/
√

2.
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a simple closed-form solution and computational expense makes numerical integration relatively

cumbersome. In practice, for the purpose of optimizing ψ0(α), a rectangular approximation for the

integral over each pixel seems sufficient. In this approximation,

wmn(xi, yj ;α) ≈ w(xm − xi, yn − yj;α)∆x∆y, (8)

where w(x, y;α) is evaluated at the center of each pixel and where the pixel area is ∆x∆y.

When sources are closely spaced, accurate estimates of the source size and position are espe-

cially important. In the context of the Level 3 detect pipeline, I assume that an approximate source

position has been determined by wavdetect. A small sub-image of the source is extracted using

these coordinates. The accuracy of this source position is refined by searching the center of the

sub-image for the coordinates (x0, y0) that maximize ψ0(a, a, 0). Once the source center coordinates

(x0, y0) have been established, a new sub-image is extracted using the improved source position.

A refined estimate of the source size is obtained by computing ψ0(a, a, 0) on a grid of a values

spanning the half-width of the source image fmn. When a single source is present, the location of a

local maximum, where ∂aψ0 = 0 and ∂2
aψ0 ≤ 0, provides a good estimate of the source size. When

the source of interest is blended with other nearby sources, an inflection point, where ∂2
aψ0 = 0,

often occurs near the “edge” of the central source. The smallest a that corresponds to either a

local maximum or an inflection point provides a good initial guess for the source size. When the

first occurrence of ∂aψ0 = 0 occurs at a local minimum, where ∂2
aψ0 > 0, the smallest value of a on

the pixel grid is used as the initial source size.

Using these refined estimates of the source position and size, the size and orientation of an

elliptical Gaussian source region are derived by maximizing ψ0(α) ≡ ψ(x0, y0;α). Because op-

timization algorithms are usually designed to search for minima, ψ0(α) can be maximized by

minimizing −ψ0(α). The minimization can be performed by any generic minimization algorithm;

a prototype implementation of this algorithm used the subplex minimization algorithm (Rowan

1990).

4. Tests

For the MHO algorithm (§2), the primary sources of error are Poisson noise, pixelization, non-

Gaussian structure in the point-spread function (PSF), and confusion with nearby point sources

(effectively a non-linear background). Monte Carlo simulations using isis and MARX have been

used to examine these issues.

4.1. Ideal PSF (no PSF blur)

The MHO algorithm (§2) was applied to Monte Carlo simulations of elliptical Gaussian sources

including Poisson noise, a flat, diffuse background and no PSF blur. The simulated sources had

semi-major axes 1.125 ≤ σ1 ≤ 4 pixels and position angles 0 ≤ φ ≤ π with the semi-minor axis

fixed at σ2 = 1pixel. Figure 1 shows the cumulative semi-major axis error distributions for Monte
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Fig. 1.— Cumulative distribution of semi-major axis fractional errors from Monte Carlo trials

with and without Poisson noise. The fake sources had ∼ 50 counts each. The red curve represents

5760 trials without Poisson noise, finely sampling the parameter range 1.125 ≤ σ1 ≤ 4 pixels and

0 ≤ φ ≤ π with the semi-minor axis fixed at σ2 = 1 pixel. The black curve represents 6600 trials

including Poisson noise; the parameter ranges were more coarsely sampled and 100 trials were done

with each set of parameters.

Carlo trials with ∼ 50 count extended sources.

With Poisson noise turned off, 5760 simulations were performed, on a uniform grid of 64 semi-

major axis values and 90 position angles. In 68% of the trials, the input semi-major axis σ1 values

were recovered to ≤3.2% accuracy, limited primarily by pixelization errors.

With Poisson noise turned on, 100 trials were done with each set of parameter values on a

uniform grid of 6 semi-major axis values and 11 position angles. In 68% of the trials, the input σ1

values were recovered to within ≤ 17% (13%) accuracy for sources with ∼50 (100) counts each.

4.2. MARX PSF

Two MARX simulations demonstrate the ability of the MHO algorithm (§2) to distinguish

between point sources and extended sources when position-dependent, non-Gaussian PSF blur is
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Fig. 2.— Source ellipse semi-major axis, σ, determined by the MHO algorithm vs. off-axis angle,

θ, for MARX-simulated sources (ACIS-I + Chandra blank-sky background). The black symbols

represent point sources. The blue symbols represent extended sources (Gaussian, σ = 2arcsec).

The median σ value in each θ bin is plotted with error bars that enclose the central 90% of the σ

distribution within each bin. Both source populations have ∼ 130 counts per source. For reference,

red squares indicate the ECF=0.40 radius of the Chandra PSF (Allen, Jerius & Gaetz 2004).

present.

To avoid source blends, fake sources were inserted into a source-free uniform background

constructed from the ACIS blank-sky background files2. Fake sources were evenly spaced in a

uniform pattern of concentric rings centered on the optical axis. One simulation contains a pattern

of point sources while the other contains a pattern of Gaussian sources having σ = 2arcsec. Both

source populations have ∼ 130 counts per source.

The MHO algorithm (§2) was then applied to the list of source positions used in constructing

the simulation. The resulting source region size distributions are shown in Figure 2. In both of

these tests, the spread in σ values for the extended sources is consistent with the level of scatter

seen in Monte Carlo tests without PSF blur. This suggests that the primary effect of the PSF blur

is to introduce a corresponding systematic increase in the σ value obtained by the algorithm. For

a Gaussian PSF and a Gaussian source, the expected source size is

σ2 = σ2
0 + σ2

psf , (9)

2http://cxc.harvard.edu/ciao/threads/acisbackground
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Fig. 3.— Source ellipse semi-major axis, σ, determined by the MHO algorithm vs. off-axis angle,

θ, for MARX-simulated sources (ACIS-I + Chandra blank-sky background). The black symbols

represent point sources. The blue symbols represent extended sources (uniform surface brightness

disk with 2 arcsec radius). The median σ value in each θ bin is plotted with error bars that enclose

the central 90% of the σ distribution within each bin. Both source populations have ∼ 130 counts

per source. For reference, red squares indicate the ECF=0.40 radius of the Chandra PSF (Allen,

Jerius & Gaetz 2004).

where σ0 is the true source size and σpsf is the PSF size. Because the Chandra PSF is asymmetric

and has non-Gaussian components, equation (9) is only approximately correct.

Inspection of Figure 2 shows that the extended sources are unambiguously identified within

. 8 arcmin of the optical axis. At larger off-axis angles, the PSF size is comparable to the source

extent and the two source populations overlap. Most of the outlier points correspond to cases where

the simulated source overlaps the edge of the detector.

Near the optical axis, point sources yielded σ ≈ 0.4 arcsec3 while Gaussian extended sources

yielded σ ≈ 1.9 arcsec. For the extended sources, the input source size was σ = 2 arcsec (4 pixels).

Accounting for the ∼ 0.4 arcsec blur expected due to the MARX PSF and the dither, the expected

detector image size is (22 + 0.42)1/2 = 2.04 arcsec. The MHO algorithm slightly underestimated

the Gaussian source size, but the correct value falls within the 1σ error bar.

3For a 2-D Gaussian, the fraction, f , of the total flux enclosed within radius r, is f = 1 − exp(−r2/2σ2) so that

r = σ encloses a fraction, f = 0.393.
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As an additional test, I processed a second test pattern of extended sources, this time using

uniform surface brightness disks instead of Gaussians. The radius of each disk source was 2 arcsec,

the same as the σ value used for the Gaussian sources. The disk sources had the same flux

as the Gaussian sources, so their surface brightness is somewhat higher. Figure 3 compares the

distribution of region sizes for the disks with that of the point sources. Near the optical axis,

the disk sources yielded semi-major axes of σ ≈ 1.1 arcsec. This apparent underestimate occurs

primarily because my implementation of the MHO algorithm assumes that the target source is a

Gaussian. If the source were known to be a uniform disk, the estimated source size would have

been R = a
√

2 ≈ 2.7 arcsec (the value of a is the same in each case).

4.2.1. Source Region Parameter Uncertainty

To characterize the errors associated with the source region parameters determined by the

MHO algorithm, I used MARX simulations to perform a number of Monte-Carlo trials. Each

MARX simulation consisted of a test pattern of sources, each source having the same size and

approximately the same brightness. I considered point sources with ∼15-300 counts and Gaussian

extended sources having σ = 1-8 arcsec and ∼15-300 counts within 1σ.

Figure 4 shows the distribution of source region sizes obtained from each of these simulations.

In each case, approximately 90% of the source sizes were within ∆σ of the median value where

∆σ

σ
≡ fmho ≈ 0.3

(

15

Nσ

)1/2

, (10)

where Nσ is the number of counts within 1σ.

Figure 5 shows the amplitude of the position error, rε ≡ (δx2 +δy2)1/2, as a function of off-axis

angle θ. The position errors are distributed such that about 90% fall inside a circle of radius

rε ≈ 2σ̄ N−1/2
σ exp

(

θ

24′

)

(11)

where σ̄ ≡ (σ1 + σ2)/2, Nσ is the number of counts above background within 1σ, and θ is the

off-axis angle in arc-minutes. Although equation (11) holds for Nσ . 300, it may break down for

Nσ ≫ 300. The MHO algorithm has not yet been tested extensively in the limit Nσ ≫ 300.

When the source size is comparable to the PSF size, the direction of the position error, φε ≡
tan−1(δy/δx), is correlated with the position angle, φ, of the source ellipse major axis (and φ is

strongly correlated with the position angle of the PSF ellipse). The strength of this correlation

depends on the number of source counts but is apparent even for relatively faint point sources. For

circular extended sources larger than a few arc-seconds in apparent size, the correlation effectively

disappears.

For sources comparable in size to the PSF, it may be desirable to define a position error ellipse

that accounts for the correlation between the position error direction and the position angle of the
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source region ellipse. Perhaps the simplest approach is to define a position error ellipse having the

same axis ratio and orientation as the source region ellipse, but with semi-axes scaled to match

equation (11). The semi-axes of that position error ellipse are

ε1 =
rε

(1 + ξ2)1/2
, ε2 = ξε1, (12)

where r2ε = ε21 + ε22, and where ξ ≡ σ2/σ1, is the axis ratio of the source region ellipse. For sources

with σi ≫ σpsf , the position error direction is not correlated with the orientation of the source

region ellipse. In such cases, rε properly defines an error circle.
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Fig. 4.— Distribution of source region sizes derived from MARX-simulated data using the MHO

algorithm. The simulations included point sources and Gaussian extended sources with σ = 1-

8 arcsec. Each panel shows sources having a similar number of counts. The cross-hatched regions

approximately represent the central 90% of each source size distribution; point-sources are shown

in black. The black lines enclosing each cross-hatched region represent the approximate error bar

from equation (10).
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Fig. 5.— Distribution of errors in source position, N
1/2
σ rε/σ̄, vs. off-axis angle, θ. Black symbols

represent MARX-simulated sources spanning a range in brightness and spatial extent. The sample

includes both point sources and Gaussian extended sources with σ = 1–8 arcsec and spans a range

in brightness such that the sources have Nσ ≈ 15–300 counts. The red curve corresponds to the

expression in equation (11).
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Fig. 6.— Source ellipse semi-major axis, σ, determined by the MHO algorithm vs. off-axis angle,

θ. Blue symbols represent SAOSAC-simulated point sources; black symbols represent MARX-

simulated point sources. In each case, the simulated point sources were added an event file from

Chandra obsid 2925. The two outlier points in blue at θ = 1 arcmin correspond to a minor flaw in

the SAOSAC simulation (see Figure 7). For reference, red squares indicate the ECF=0.40 radius

of the Chandra PSF (Allen, Jerius & Gaetz 2004).

4.3. SAOSAC PSF

To compare the performance of the MHO algorithm on SAOSAC-simulated data with its

performance on MARX-simulated data, both MARX and SAOSAC were used to simulate the same

test pattern of point sources and the MHO algorithm was applied to both data sets (the SAOSAC

simulation was created by Frank Primini). The resulting distribution of source region semi-major

axis values is shown in Figure 6.

Inspection of Figure 6 shows that, aside from two outlier points near θ = 1 arcmin, the MHO

algorithm generates source regions for both the MARX and SAOSAC simulations that are almost

identical. There does appear to be a slight trend, with MARX sources having a systematically

flatter size distribution. Nevertheless, these differences are within the error bars expected in most

practical applications.



– 12 –

(a) (b)

Fig. 7.— Part of the test pattern of point sources used to compare the performance of the MHO

algorithm on (a) MARX-simulated data and (b) SAOSAC-simulated data. In each figure, red

ellipses indicate source regions generated by the MHO algorithm. Note that these images show all

detected events, thus over-emphasizing the PSF wings in order to show the fainter chip-gap sources

in (b). The 4 arcsec radius extended source near the center of the test pattern is a supernova

remnant in NGC 6822 (Tennant 2006).

In Figure 6, the two outlier points near θ = 1 arcmin occur because, after the SAOSAC

simulation was processed by psf_project_ray, the events were filtered to remove events with

invalid chip coordinates (<1 or > 1024). Figure 7 shows that this filtering removed a significant

fraction of the counts from these two point sources. Because the resulting detector images of these

two sources is highly asymmetric, it is not surprising that the MHO algorithm generated a highly

elliptical source region quite unlike the Chandra PSF shape at that location.

Given that the other source regions match within the errors, I conclude that MARX simulations

are adequate for the purpose of characterizing the performance of the MHO algorithm.
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5. Caveats

The following caveats apply to the MHO algorithm as described in §2:

1. The algorithm requires, as input, a rough estimate of the source size (σ). For best results, this

estimate should be within a factor of ∼3 of the actual source σ; an underestimate is better

than an overestimate. For point sources and moderately extended sources (e.g. σ . 3 arcsec),

use the approximate PSF size.

2. The algorithm tends to focus on any bright, sharply peaked source components and is insensi-

tive to any fainter, more diffuse, extended emission that lies nearby. To detect such extended

emission, one might compare the counts in an adjacent elliptical annulus with an estimate of

the background level.

3. The algorithm is not designed to separate blended sources and is unlikely to generate optimal

source regions in such cases.

4. The algorithm makes no attempt to detect cases in which no significant source is present

above background within the ellipse that was initially provided by wavdetect. In such cases,

subsequent optimization of ψ may yield a meaningless result, such as an ellipse of maximum

size or an ellipse of random size centered on a noise peak.

5. The algorithm generates source regions with no internal reference to the PSF.

6. The algorithm has not been extensively tested with sources having Nσ ≫ 300 or with sources

that are heavily piled-up.

6. Issues

wavdetect often provides inaccurate positions for weak or extended sources and often reports

multiple positions for a single extended source. To a certain extent, the MHO algorithm can correct

the source position, but if that correction fails, the resulting region size is unlikely to be accurate.

One potential alternate method for determining source regions is to fit each source image with

one or more 2-D elliptical Gaussians plus a background component. Such fits are likely to involve

a relatively large number of free parameters; a linear background component introduces 1-3 free

parameters and each additional Gaussian profile introduces 4-6 parameters. For sources with a large

number of detected counts, the high signal to noise ratio may enable these fits to converge and even

to yield useful confidence intervals on the fit parameters. The extent to which this approach is

feasible in the low counts limit is unclear.
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7. Recommendations

1. Use wavdetect to generate a preliminary list of source regions.

2. Use the MHO algorithm to improve the wavdetect source regions; a S-Lang implementation

is provided with this document.

3. An isolated source with a significant number of counts above background is likely to be

extended if min(σi) > σt, where

σt ≡
σpsf

1 − max(fpsf , fmho)
. (13)

In equation (13), fpsf ≡ ∆σpsf/σpsf is the fractional uncertainty in the PSF size, fmho is the

fractional uncertainty in the source region size from equation (10), and Nσ is the number

of counts above background inside σi. Note that the expression for fmho rapidly becomes

meaningless when Nσ . 15 counts.

4. A point-like source (σi < σt) may be considered to be extended if the count-rate in an adjacent

elliptical annulus exceeds the expected background count-rate by more than 3σ. However, in

crowded fields, this criterion may be misleading.

5. Use equation (9) to estimate the “de-convolved” source size.

6. Use equation (10) to estimate the statistical error in the source region size.

7. Use equation (11) to estimate the statistical error in the relative source position. For sources

comparable in size to the PSF, a position error ellipse may be defined by scaling the source

region semi-axes using equation (12). Note that this is an estimate of the relative position

error only; the absolute position error must account for the absolute accuracy of the aspect

solution, including the roll angle and the off-axis angle.
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% -*- mode: SLang; mode: fold -*-

% Author: John C. Houck <houck@space.mit.edu

% Written: July 2007

%

% This algorithm is intended to generate an elliptical source region

% given an approximate source position (sky X,Y) and a crude estimate

% for the source size, such as may be produced by a source detection

% algorithm.

%

% Interface:

%

% params[] = mho_find_source_extent (events, x0, y0, crude_src_size,

% img_size, bin_factor);

% params[] = Source region parameters

% [x0, y0, sigma_1, sigma_2, phi]

% (x0, y0) = sky X,Y coordinates of the region center [pixels]

% (sigma_1, sigma_2) = Gaussian sigma values [pixels]

% phi = Ellipse position angle [radians]

% The +X axis is phi=0.

% The +Y axis is phi=PI/2.

% events = Struct_Type containing sky X, Y coordinates for

% the detected events.

% x0, y0 = Approximate sky X, Y coordinates for a detected

% source.

% crude_src_size = Crude estimate of the source size [pixels].

% For best results, the estimate should be within a

% factor ~3 of the actual source size. For point sources

% and moderately extended sources, use the approximate

% PSF sigma at (x0, y0) [e.g. radius enclosing 40% of

% the flux].

% img_size = Size [pixels] of the region centered on (x0, y0) to

% be examined by the algorithm. If img_size=0, the

% algorithm will choose a value.

% bin_factor = Integer factor by which the extracted image

% should be binned. If bin_factor=0, the algorithm

% will choose a value.

%

% Note: ’pixel’ means ACIS pixel = 0.492 arcsec.

% Mho_Max_Size_Factor sets the largest size scale and the maximum axis

% ratio for source regions. If the value is "too large", things

% will run a lot slower (big images) and confusion problems
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% in crowded fields will probably get worse.

variable Mho_Max_Size_Factor = 3.0;

% isis-specific: silence warnings that "minimization failed"

public define fit_verbose_warn_hook (s){ }

private variable _e;

try (_e)

{

require ("maplib");

}

catch AnyError:

{

%print(_e);

};

#ifnexists maplib_meshgrid

private define maplib_meshgrid (y, x) %{{{

{

variable

ny = length(y),

nx = length(x),

X = Double_Type[ny, nx],

Y = Double_Type[ny, nx];

_for (0, ny-1, 1)

{

variable j = ();

X[j,*] = x[*];

}

_for (0, nx-1, 1)

{

variable i = ();

Y[*,i] = y[*];

}

return Y, X;

}

%}}}

#endif

private define extract_image (t, x0, y0, xsize, ysize, bin_factor) %{{{
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{

variable

hwx = xsize/2,

hwy = ysize/2;

variable i = where (abs(t.x - x0) < hwx

and abs(t.y - y0) < hwy);

variable f = struct {x, y, x0, y0, image};

variable

nx = nint(xsize/bin_factor),

ny = nint(ysize/bin_factor);

% odd dimensions work better, assuming that the

% image is centered on the source of interest

if ((nx/2)*2 == nx) nx += 1;

if ((ny/2)*2 == ny) ny += 1;

f.x = [x0-hwx:x0+hwx:#nx];

f.y = [y0-hwy:y0+hwy:#ny];

f.image = histogram2d (t.y[i], t.x[i], f.y, f.x);

f.x0 = x0;

f.y0 = y0;

f.x -= x0;

f.y -= y0;

% grid will give pixel center coordinates

% except in over-flow bin

variable

dx = f.x[1] - f.x[0],

dy = f.y[1] - f.y[0];

f.x += 0.5*dx;

f.y += 0.5*dy;

return f;

}

%}}}

private define elliptical_mh (x, y, pars) %{{{

{
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variable phi = pars[2];

variable r2 = sqr((x*cos(phi) + y*sin(phi))/pars[0])

+ sqr((-x*sin(phi) + y*cos(phi))/pars[1]);

return (2 - r2) * exp (-r2/2);

}

%}}}

private define correlation_integral (x, y, pars, f) %{{{

{

variable i = where (f.image != 0);

if (length(i) == 0)

return 0.0;

variable

dx = f.x[1]-f.x[0],

dy = f.y[1]-f.y[0];

variable X, Y, w;

(Y, X) = maplib_meshgrid (f.y - y, f.x - x);

w = elliptical_mh (X[i], Y[i], pars);

return sum (w * f.image[i]) * dx * dy;

}

%}}}

private variable Constraint_Info;

private define axes_constraint (stat, p) %{{{

{

variable f = Constraint_Info;

% If the source’s physical location is known, the correlation

% maximum will occur in that pixel, so we don’t need to compute

% the other pixels.

variable dims = array_shape (f.image);

variable

Y = f.y[dims[0]/2],

X = f.x[dims[1]/2];

variable W_max;

W_max = correlation_integral (X, Y, p, f);



– 19 –

return -W_max / sqrt(p[0]*p[1]);

}

%}}}

private define randomize_near_value (f, list) %{{{

{

if (list == NULL)

list = [1:get_num_pars ()];

foreach (list)

{

variable idx = ();

variable s = get_par_info(idx);

if (s.freeze or s.fun != NULL or s.tie != NULL)

continue;

variable val;

do

{

if (s.value != 0)

val = s.value * (1.0 + f * grand());

else

val = f * grand();

}

while (val < s.min or s.max <= val);

set_par (idx, val);

}

}

%}}}

private define compute_stat (a) %{{{

{

variable info;

set_par ("constraint", [a, a, 0]);

() = eval_counts (&info);

return -info.statistic;

}
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%}}}

define sign_change (y) %{{{

{

variable sy = sign(y);

variable i = where (sy != shift(sy,1));

if (length(i) == 0)

return i;

variable n = length(y);

return i[where(i < n-2)];

}

%}}}

define deriv (y) %{{{

{

return y - shift(y,1);

}

%}}}

private define correlation_scale (f) %{{{

{

variable

as = f.x[where(f.x > 1)],

w = array_map (Double_Type, &compute_stat, as);

variable w1, i1;

w1 = deriv(w);

i1 = sign_change(w1);

if (length(i1) == 0)

{

return as[0];

}

variable w2, i2;

w2 = deriv(w1);

i2 = sign_change(w2);

variable ilist = [i1, i2];

ilist = ilist[array_sort(ilist)];

variable i = ilist[0];
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if (w2[i] > 0)

{

if (w[0] > w[i])

{

return as[0];

}

else i = ilist[1];

}

return as[i];

}

%}}}

private define optimizer_init () %{{{

{

% isis-specific hack: The fit engine needs a spectrum

% and a model to fit so provide them -- but in this case,

% the constraint function is what matters.

delete_data (all_data);

Minimum_Stat_Err=1.e-30;

() = define_counts (0.5, 1.5, 1.0, 1.e-10);

fit_fun ("bin_width(1)");

}

%}}}

define _mho_optimize_axes (f, a_guess, crude_src_size) %{{{

{

variable a_max_factor = Mho_Max_Size_Factor;

ifnot (any(f.image > 0))

return [-1.0, -1.0, 0.0];

optimizer_init();

Constraint_Info = f;

set_fit_constraint (&axes_constraint, ["a1", "a2", "phi"]);

% correlation_scale almost always gives the best

% initial estimate for a. Is there a situation
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% where the input a_guess is consistently better?

variable a_scale = NULL; %a_guess;

if ((a_scale == NULL) || (a_scale < crude_src_size))

{

a_scale = correlation_scale (f);

if (a_scale < crude_src_size)

a_scale = crude_src_size;

}

% Prefer a1 >= a2.

% 0.6 is a common Chandra PSF axis ratio.

%

% a_max is set conservatively low to minimize trouble in

% crowded fields. For that reason, there’s some motivation to

% set a_min generously low -- the PSF size provides a

% natural lower bound to filter on and, if the correlation

% scale is relatively large, the generous lower bound provides

% wiggle room to fit highly elliptical source regions.

variable

phi_start = 0.0,

a_min = a_scale * 0.2,

a2_start = a_scale * 0.8,

a1_start = a_scale * 1.2,

a_max = a_scale * a_max_factor;

if (a_max <= a1_start)

{

throw ApplicationError, "Mho_Max_Size_Factor=$Mho_Max_Size_Factor is too small"$;

}

set_par ("constraint",

[a1_start, a2_start, phi_start],

[0, 0, 0],

[a_min, a_min, -1.5*PI],

[a_max, a_max, 1.5*PI]);

set_fit_method ("subplex;maxnfe=500;tol=1.e-4;scale_factor=0.125");

Fit_Verbose = -1;

variable pars, num_loops = 0;

forever

{
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% adjust phi

freeze(1,2); thaw(3);

() = fit_counts;

% adjust all params

thaw (1,2,3);

variable status = fit_counts();

% avoid quitting when axes are at their range limits

pars = get_par ([1,2,3]);

variable pegged = (abs(1 - max(pars[[0:1]])/a_max) < 0.01

|| abs(1 - min(pars[[0:1]])/a_min) < 0.01);

if (status == 0 && pegged == 0)

break;

num_loops++;

if (num_loops >= 5)

break;

% re-set the parameters only if we’re going to try

% another fit

set_par ("constraint", [a1_start, a2_start, PI*urand()]);

randomize_near_value (0.05, NULL);

}

% Always report a1 >= a2

pars = get_par([1,2,3]);

if (pars[0] < pars[1])

{

pars = pars[[1,0,2]];

pars[2] += PI/2;

}

% Always report 0 <= phi <= PI

pars[2] = pars[2] mod PI;

if (pars[2] < 0) pars[2] += PI;

set_par ("constraint", pars);

return pars;

}

%}}}
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private define position_size_constraint (stat, p) %{{{

{

variable f = Constraint_Info;

variable

x = p[0],

y = p[1],

a = p[2];

return -correlation_integral (x, y, [a,a,0], f)/a;

}

%}}}

private define improve_source_position (f, crude_src_size, x0_ref, y0_ref, a_ref) %{{{

{

ifnot (any(f.image > 0))

return 0;

optimizer_init ();

Constraint_Info = f;

set_fit_constraint (&position_size_constraint, ["x", "y", "a"]);

variable

nx = length(f.x),

ny = length(f.y),

ox = nx/4,

oy = ny/4;

variable

a_min = 0.5 * crude_src_size,

a_max = 0.5 * min([f.x[nx-ox-1], f.y[ny-oy-1]]),

a = min ([crude_src_size, sqrt(a_min * a_max)]);

% Look for a better source position

% near the middle of the sub-image

set_par ("constraint",

[ 0.0, 0.0, a],

[ 0, 0, 0],

[f.x[ox], f.y[oy], a_min],

[f.x[nx-ox-1], f.y[ny-oy-1], a_max]);
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set_fit_method ("subplex;maxnfe=500;tol=1.0e-4;scale_factor=0.125");

Fit_Verbose = -1;

variable initial, final;

() = eval_counts (&initial);

() = fit_counts (&final);

if (final.statistic < initial.statistic)

{

variable pars = get_par ([1,2,3]);

@x0_ref = f.x0 + pars[0];

@y0_ref = f.y0 + pars[1];

@a_ref = pars[2];

return 1;

}

return 0;

}

%}}}

define mho_find_source_extent (events, x0, y0, crude_src_size, img_size, bin_factor)

{

variable adjustable_bin_factor = 0;

if (crude_src_size <= 0)

{

throw ApplicationError, "crude_src_size > 0 is required";

}

if (img_size <= 0)

{

% img_size should be _much_ larger than

% the max allowed elliptical region size

variable max_major_axis = 2 * (Mho_Max_Size_Factor * crude_src_size);

img_size = 10 * max_major_axis;

}

if (bin_factor <= 0)

{

adjustable_bin_factor = 1;

if (img_size < 128)

bin_factor = 1;
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else

bin_factor = nint(img_size/128);

}

variable f = extract_image (events, x0, y0, img_size, img_size, bin_factor);

if (adjustable_bin_factor && (bin_factor > 1))

{

% If the source region looks bright, don’t use coarse binning.

forever

{

variable dims = array_shape(f.image);

variable ny = dims[0], nx=dims[1],

iy = [ny/2-ny/8:ny/2+ny/8],

ix = [nx/2-nx/8:nx/2+nx/8];

if (max(f.image[iy,ix]) < 100 or bin_factor == 1)

break;

bin_factor /= 2;

f = extract_image (events, x0, y0, img_size, img_size, bin_factor);

}

}

variable a_guess;

if (improve_source_position (f, crude_src_size, &x0, &y0, &a_guess))

{

f = extract_image (events, x0, y0, img_size, img_size, bin_factor);

}

variable pars = _mho_optimize_axes (f, a_guess, crude_src_size);

#iftrue

% source = 2-D Gaussian => sigma_i = a_i / sqrt(3)

pars[[0:1]] /= sqrt(3);

#else

% source = uniform circular disk => R = a * sqrt(2)

pars[[0:1]] *= sqrt(2);

#endif

return [x0, y0, pars];

}


