
An Improved Method for MCMC Sampling in CSC2 Aperture Photometry
Rafael Mart́ınez-Galarza (CfA) Date: 01/24/2020

1 Motivation

This specification document describes a novel approach for performing MCMC sampling of the posterior
probability density functions resulting from aperture photometry analysis in the Chandra Source Catalog.
The general algorithm, as described in this memo and in this memo, remains unchanged. That is, for the
purposes of this document, the Bayesian formalism to determine the marginalized posterior probability
density functions (MPDFs) for the photon flux in each band is described by equations (1) to (3) in the
first memo above.

During catalog processing, the sampling of the MPDFs was done using MCMC as implemented in Sherpa,
which uses a MCMC algorithm called pyBLoCXS, which is described here. Although pyBLoCXS has
been shown to be successful and flexible for fitting of Chandra spectra, it is not optimized for aperture
photometry. In addition, it uses a rather outdated approach to efficient MCMC sampling, namely a
Metropolis-Hastings jumping rule with a t-distribution as proposal distribution. It also requires the user
to define important parameters such as the factor by which the covariance matrix (which approximates
the shape of the MPDF near the optimum) is scaled in order to provide a step size for the jump. This
can result in very inefficient sampling in multi-variate parameter spaces with many degrees of freedom,
as optimal step sizes can be different in each dimension (and also, depending on the complexity of the
joint PDF, a covariance matrix is not always avaliable).

Even if the step sizes were optimized more appropriately, the Metropolis-Hastings jumping rule does
not profit from recent improvements in MCMC sampling, that can significantly enhance the convergence
efficiency by one or two orders of magnitude. In particular, pyBLoCXS does not use gradient-based
methods for sampling. Gradient-based methods have been broadly adopted for many applications that
require the sampling of complex, multi-dimensional parameter spaces. Their power rests in the fact
that given any smooth function that describes the PDF, these methods use the gradient information at
each step in order to propose an informed step in the direction of the optimum, rather than a random
step. Newly developed methods of automatic differentiation are used to provide the gradients even if
the function does not have an analytical formulation. This allow for extremely fast optimization and
sampling.

The flaws of plain MCMC smapling with Metropolis-Hastings steps resulted in a significant number of
CSC2 sources for which the Sherpa MCMC did not converge in aperture photometry. This was specially
problematic for sources with a low number of counts, for which reliable covariance matrices could not
be obtained. CSC2 scientists had to establish empirical correlations between approximated covariance
diagonals obtained using alternative methods (such as int-unc) and the actual width of the PDF. These
correlations were later applied to the results before the MCMC algorithm could be run again. Even so,
there were a number of sources for which the source flux PDFs did not converge, as can be demonstrated
by finding the data products for these sources in CSC2.

Here I propose the use of gradient-based methods for the MCMC sampling of aperture photometry
MPDFs, and demonstrate how using them significantly improves convergence and effiency for those
problematic sources. Because these methods require little parameter tunning, they should help in the
automathization of catalog processing in the future.

2 The NUTS sampler

One of the most popular gradient-based methods is the No-U-Turn Sampling (NUTS, Hoffman & Gelman, 2011),
which is an extension of the Hamiltonian Monte Carlo (HMC) algorithm that requires very little tuning
of the hyperparamters by the user. HMC uses intuition from Hamiltonian dynamics in order to sample
the posterior function by solving a dynamical system using leapfrog steps. Each new proposed steps
comes from the resulting trajectory of a particle with a random initial kinetic energy across the proba-
bility landscape. The user needs to set both the size of the step for the leapfrog simulation and the total

1

https://cxc.cfa.harvard.edu/csc2/memos/files/Primini_aperture_photometry_specs.pdf
https://cxc.harvard.edu/csc2/memos/files/Primini_Combining_Data_from_Multiple_ObsIDs_in_Aperture_Photometry.pdf
https://hea-www.harvard.edu/AstroStat/pyBLoCXS/
http://jmlr.org/papers/volume18/17-468/17-468.pdf
https://arxiv.org/abs/1111.4246

number of steps before another proposal is considered. The NUTS algorithm makes it unnecessary to
tune the number of steps in the trajectory calculation by setting a stopping criterion for the trajectory at
each step, based in the direction of motion of the particle (hence the No-U-Turn name). The algorithm
is extremely efficient at sampling the posteriors that result from Poisson-like likelihoods we are dealing
with in aperture photometry (as well as other aspects of MLE fitting).

The PyMC3 python package provides a very straightforward and modular way to define a probabilistic
model, optimize it, and sample the resulting posterior PDFs. PyMC3 uses a theano backend1 in order to
perform automatic differentiation, and allows for straightforward sampling using the NUTS algorithm.
All the user needs to care about is defining the priors, the likelihood, and provide the data to be fitted.

Implementation

The implementation of the prototype is very straightforward and it requires minimum changes to the
overall structure of the pipeline. Starting from the prep3 files that contain the information of the counts
and the F matrices that use the PSF franctions and exposure maps in oder to convert the counts to
photon and energy fluxes, the algorithm builds a PyMC3 model that defines uniform uninformative
priors for the net source counts of each source in the bundle and the common background. It then
defines the expected value for the total counts in each aperture (equation 3 in the orginal memo) as the
sum of the contribution from each source in the bundle and the common background. Finally, it defines
a Poisson likelihood, which can be expressed in terms of a Cash statistic (see code below). The model
can be easily expanded to include contributions from more than one obsid to a given source.

The resulting model is then sampled using NUTS. All that needs to be specified is the number of samples
in the chain. If more than one processor is available in the system where the code is being run, PyMC3
will automatically start multiple MCMC chains, each with the number of samples requested. The tests
performed here indicate that for a typical bundle with a handful of sources, single observation, it takes
only 1000 samples to have all sources in the bundle converged, and about 5s of computing time in a typical
desktop machine, to reach acceptable values of r̂. The computing times does not increase dramatically
when the joint model for multiple observations is computed. In particular, the convergence behavior is
satisfactory for cases where there are no counts in the aperture. The model is able to interpret this as
an upper limit and produces samples for the limiting PDF.

2.1 Inputs

The inputs required are the prep3 files containing the number of total counts for each source in the
bundle as well as the F matrices that convert the contributing counts in each aperture from each source
to photon and energy fluxes, taking into account the PSF fractions and exposure maps. The prep3 files
have a column corresponding to the source aperture, and one column corresponding to the ecf90 area.
This input is the same as for the Sherpa implementation.

2.2 Outputs

The outputs are the converged MCMC traces for each source in the bundle. Processing is done in a
per-bundle basis, which means that the output for a particular run has as many traces as sources in the
bundle. The code also returns a statistical summary for each trace, including the mean, the standard
deviation, the MC error, 2.5% and 97.5% percentiles, and the r̂ value to assess convergence. Plotting of
the traces is modular and straightforward.

3 Tests

In order to test the performance of this implementation and its ability to reduce fine-tuning of hyper-
parameters for corner cases in future releases of the catalog, I have applied this formulation to a sub-
sample of the corner cases that initially did not converge during processing of CSC2, and for which a

1PyMC4 will switch to a TensorFlow backend, as support for theano is being discontinued

2

https://cxc.cfa.harvard.edu/csc2/memos/files/Primini_aperture_photometry_specs.pdf

source mean sd mc-error hpd2.5 hpd97.5 r̂
s0 7.889459e-17 7.817299e-17 5.896827e-19 9.813239e-21 2.349844e-16 1.000025
s1 1.919984e-15 6.037024e-16 4.591080e-18 8.214130e-16 3.127957e-15 1.000002
b 1.107955e-18 7.916104e-20 5.792091e-22 9.549496e-19 1.264129e-18 1.000327

Table 1: Summary of trace statistics for acisf00972002N020b0511s.

fine-tuning of the MCMC step size was needed. I describe the results below. Most of the cases, but
not all of them, are in the very-low count regime, with some of the sources having 0 total counts in the
aperture. PyMC3 is able to understand that this is compatible with an upper limit, and produces a well
converged trace for these cases. Using the different versions of the F matrices (’PSF_UNEX’, ’PSF_FLUX’),
we obtain predictions for the number of counts and the energy fluxes, respectively.

We tested the code for the following corner case bundles, all of which had at least one source that failed
to converge during the initial processing of CSC2:

acisf00972_000N020_b0252_b acisf00972_002N020_b0511_s

acisf04698_000N021_b0103_b acisf04698_000N021_b0103_m

acisf04699_000N021_b0103_b acisf04700_000N021_b0103_b

acisf04701_001N021_b0103_b acisf04702_000N021_b0103_b

acisf04703_000N021_b0103_b acisf04704_001N021_b0103_b

acisf04705_000N021_b0103_b acisf04708_000N021_b0103_b

acisf06403_001N020_b0511_s acisf06420_000N020_b0252_b

acisf06420_000N020_b0511_s acisf06421_000N020_b0252_b

acisf06421_000N020_b0511_s acisf07188_000N021_b0030_h

acisf08460_000N020_b0252_b acisf08460_000N020_b0511_s

acisf08461_000N020_b0252_b acisf08461_000N020_b0511_s

acisf09555_000N021_b0103_b

In some cases (e.g., acisf00972_002N020_b0511_s, acisf04698_000N021_b0103_m), the pipeline MCMC
algorithm failed to converge even after the parameters were tuned in reprocessing. As a result, these
sources, as currently available in the catalog, have invalid MPDFs, with the values bein either zeroes or
’nans’.

3.1 Single obsid case

In figures 1 and 2, and in the tables below, I show some of the converged chains for these corner cases,
starting with those for which convergence failed even after convergence fixes were attempted. For these
shown results I used 5000 samples for each of the traces (and for each of the individual MCMC walkers),
but the tests show that convergence is already achieved after about 1000 samples.

In order to make sure that we are consistent with CSC2 pipeline results that converged, in the following
plots I compare some results for CSC2 converged sources vs. the PyMC3 results. The goal here is to
corroborate the the converged MPDFs look similar in both cases. We have done this for a few of the
converged sources. Figures 3 and 4 show the results of this comparison.

Bundle acisf08461_000N020_b0252_b converged for all of the three sources it contains during CSC2
reprocessing, after the MCMC algorithm was tuned to fix convergence issues. Figure 3 and 4 show a
comparison of the PDFs between the archive data and this new implementation. Both approaches agree.
However, the pymc3 approach did not require any fine tuning of the step size or initial conditions in
order to converge. It also converged much faster than the algorithm currently in the pipeline. In order
to have an idea of the speed, consider that the pymc3 approach fits a bundle at a time, fitting all sources
in a bundle simultaneously. The test data we have used is composed of 253 bundles, each of them having
on average 3 sources, plus the background. It takes less than 40 seconds in a HEA desktop workstation
to go over each of these bundles, using 5000 samples in each MCMC chain.

3

Figure 1: PyMC3 results for bundle acisf00972002N020b0511s. The flux MPDFs are shown to the left,
whereas the traces are shown to the right. Units are ergs−1cm−2. The first of the three sources shown
had not converged in the CSC2 implementation.

Figure 2: PyMC3 results for bundle acisf04698000N021b0103m. The flux MPDFs are shown to the left,
whereas the traces are shown to the right. Units are ergs−1cm−2. The third of the three sources shown
had not converged in the CSC2 implementation.

4

source mean sd mc-error hpd2.5 hpd97.5 r̂
s0 5.696561e-15 1.840816e-15 1.695993e-17 2.316890e-15 9.296070e-15 0.999933
s1 2.497005e-15 1.124688e-15 1.098092e-17 6.490148e-16 4.833312e-15 0.999968
s2 7.042024e-16 7.056787e-16 6.467169e-18 2.311603e-20 2.080785e-15 1.000008
s3 1.622625e-15 1.005664e-15 8.347785e-18 3.515415e-17 3.546822e-15 0.999914
b 1.839223e-19 2.277386e-20 2.361439e-22 1.391440e-19 2.274110e-19 0.999958

Table 2: Summary of trace statistics for acisf04698000N021b0103m.

Figure 3: PyMC3 results for bundle acisf08461000N020b0252b. The flux MPDFs are shown to the left,
whereas the traces are shown to the right. Units are ergs−1cm−2. This is a case for which the two sources
and the background converged in CSC2 reprocessing.

0.0 0.2 0.4 0.6 0.8 1.0
1e 14

0.000

0.005

0.010

0.015

0.020

Figure 4: The archive MPDFs for the same two sources as in figure 3. Notice the agreement between
the two methods.

For those detections with available MCMC draws in the catalog -i.e., those that converged-, we
compare the mean value of the flux from the catalog database with our results from the present pymc3
prototype. We show the comparison in Fig. 5. We note that the average values are in reasonable

5

agreement with the current values in the catalog. The comparison of the PDFs show that also the errors
are similar. Pymc3, however, offers the advantage of faster convergence, and fixes those cases that failed
to converge in processing.

16.5 16.0 15.5 15.0 14.5 14.0 13.5 13.0
log flux_aper_[band] (erg/s/cm^2)

16.5

16.0

15.5

15.0

14.5

14.0

13.5

13.0

lo
g

flu
x_

py
m

c3
 (e

rg
/s

/c
m

^2
)

Figure 5: A comparison of the fluxes extracted from the CSC2 database (fluxaper[band]) and the mean
fluxes extracted from the pymc3 MCMC traces for the same detections. We used detections that did
have converged MCMC traces in the catalog.

3.2 Average flux case

Given a source detected in several obsids, we can obtain a more reliable measure of the source flux by
combining the results from the individual obsids. In the catalog this is done by running the Bayesian
algorithm using a model that has more as many flux parameters as we have obsids, using the measured
counts in each observation as the target values to be fitted. In the catalog, the resulting posterior
distributions for the average fluxes are returned as part of the phot3 files. A similar implementation is
very straightforward in pymc3. Such implementation is obtained by passing the measured counts in each
obsid as an input, and then forcing the model to fit a single flux to all of them.

I now compare the results of the two approaches. In Fig. 6 I show the PDFs for the average flux
corresponding to components 646 and 651 in obsid 8461, together with the PDF for the background
(bottom panel). Fig. 7 shows the corresponding PDFs as obtained from the catalog. We note that the
pymc3 approach gives narrower (by a factor of 2 or so) PDFs, which translates in more accurate average
flux measurements. The mean values, however, are very similar between the two approaches.

4 Concluding remarks

I have demonstrated the power of the NUTS algorithm in obtaining optimization and MCMC samples of
Bayesian posterior probability density functions for estimating aperture photometry of X-ray detections.
The pymc3 approach requires very little fine-tuning of parameters, converges in practically all relevant
cases, including upper limits and those detections that failed to converge during CSC2 processing, and
coverges comparatively quickly with respect to the pyBLoCXS implementation. By comparing the results
for a selection of CSC2 detections, I have demonstrated that the results from the new approach are in good
agreement with the results in the catalog. In the case sources detected in more than one observations,

6

Pymc3 produces more accurate results than the current pipeline approach (error bars are a factor of 2
smaller). Pymc3 both optimizes (finds an optimum) and samples the posterior MPDFs in a seamless
way. A similar approach could in principle be implemented for the MLE algorithm.

Figure 6: Average flux PyMC3 results for bundle 511 in obsid 8461. The flux MPDFs are shown to the
left, whereas the traces are shown to the right. Units are ergs−1cm−2. The top two panels correspond
respectively to regions 646 and 651. The bottom panel corresponds to the background.

0 1 2 3 4 5
1e 16

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

(a) 1b

0 1 2 3 4 5 6 7 8
1e 16

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

(b) 1a

Figure 7: The archive CSC2 MPDFs for the same two sources as in Fig. 6. Notice the agreement between
the two methods in terms of the mean value, but the better accuracy obtained with the Pymc3, as shown
by the narrower PDFs.

5 Code

Here is the full implementation for one particular bundle when it contains many observations.

import numpy as np

import matplotlib.pyplot as plt

import pymc3 as pm

7

from astropy.io import fits

import glob

theta = []

C = []

for file in glob.glob(’*0103_b*prep3*’):

print(file)

hdul = fits.open(file)

theta_comp = []

for value in hdul[5].data[’psf_matrix’].T:

theta_comp.append([value[0],value[1],value[2],value[3],value[4]]) # Here you need to append an array whose dim matches the no. of soruces

C_comp = hdul[2].data[’counts’]

theta_comp = np.array(theta_comp)

theta.append(theta_comp)

C.append(C_comp)

Now we implement the PyMC3 model

basic_model = pm.Model()

with basic_model:

Priors for unknown model parameters

s = pm.Uniform(’s’, lower=0.0, upper=1E-12, shape=(4,))

b = pm.Uniform(’b’, lower=0.0, upper=1E-15)

Expected value of outcome

mu = []

for i in range(len(theta)):

mu.append(s[0]*theta[i][0] + s[1]*theta[i][1] + s[2]*theta[i][2] +

s[3]*theta[i][3] + b*theta[i][4]) # This also has to match the number of sources (and shape of prior)

Cash statistic

def cash(observed_counts):

logpm = np.array(mu - observed_counts*np.log(mu))

return -2.0*np.sum(logpm)

Likelihood (sampling distribution) of observations

#C_obs = pm.Poisson(’C_obs’, mu=mu, observed=C)

likelihood = pm.DensityDist("C_obs", cash, observed=C)

Now we do MCMC sampling

with basic_model:

trace = pm.sample(1000,tune=1000,target_accept=0.9)

Plot traces

trarr = pm.traceplot(trace)

fig = plt.gcf()

Print MCMC summary

summary = pm.stats.summary(trace)

summary

8

	Motivation
	The NUTS sampler
	Inputs
	Outputs

	Tests
	Single obsid case
	Average flux case

	Concluding remarks
	Code

