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1 Overview

The purpose of this document is to present a statistic thgtbeaised as the basis
for an algorithm to detect the so-called pile-up cratersie@ by photon pile-up
from a bright X-ray source. The standard level-3 sourcedatieie pipeline misses
such sources and instead incorrectly identifies sourcesidrthe rim of the crater.
Knowing the locations and sizes of the craters will allowtstadse detections to
be excluded.

Craters come in various sizes and shapes. A example of aasthlodking crater
is shown in figure 1a. Because of serial CTl, some cratersromle like canyons
as the example in 1b illustrates. If the cratering sourceeggpces flares, some-
thing more akin to a “moat” can result; such an example is shofigure 1c.

In the next section, a simple mathematical characterizatfaraters based upon
moments is presented. From these considerations, aistttest may be used for
crater-detection is proposed. Some constraint equatiseg to filter out candi-
date regions and limit the number of false detections arergin section 3. Fol-
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Figure 1:Figure showing images of the three types of craters destitbthe text.



lowing a brief summary is an appendix where a crude estimfatieeominimum
count rate for a crater is given, as well some software implaation notes.

2 General Considerations

Suppose that an image is made by binning the events using giaweiegrid ex-
pressed in aspect-corrected sky coordinates. Then corssiggions2 of radius

R that contains a standard crater at its center. Such a regjiexpected to have
only a few counts)/, at its center with most counts uniformly azimuthally dis-
tributed outside some core of raditisLet M denote the total number of counts
contained in the region, and léf, be the number contained in the core. Simi-
larly, let M, = M — M, be the number outside the core. Now erect a Cartesian
coordinate system with the origin at the center of the regidbhen each image
pixel will have some coordinater, y) and containn,,, counts so that

M= my,. (1)
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For an approximately azimuthally symmetric crater, it ipested that

I, ~1,~0 (8)
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and
I, = 0. 9)

On the other hand, since the crater is expected to have femioear the origin,
I, ~ I, should be relatively large compared to the moments for aretfiat
contains an equal number of counts uniformly spread Qver

If I is defined to bd,, + I,,, then the radius of the crater may be characterized

as
r=/1/M. (10)

Furthermore, for an azimuthally symmetric distributiércan be related té;,, as
follows. In the continuum limit/ may be written as

R
I= 27T/ drp(r)r?, (12)
0
wherep(r) represents the count-density at the radial coordinagmilarly,
R 27
I, :/ rdr ddp(r)|r cos @||r sin 6. (12)
0 0
The integral ove# may be easily carried out to yield the relation

[=nl,. (13)

With the above observations in mind, consider the quaftitdefined by

T — 2]2 — kl(IIQ/M+ ‘]$y|) - k2|]—7T];y — ]{33]3
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where
Il :maX(|Ix|>|Iy|)> (15)
Iy = min(1,,, 1), (16)
]3 = (1+m00)7TR4/2. (17)

Herek,, ko, andks are positive constants, ard is the number of CCD frames
that contributed to the image, which serves to normalize



For an azimuthally symmetric crater, the first term in the euator of equation
(14) will be much larger than the remaining terms; hencedbhantity is expected
to be a large positive value. For the reasons outlined alibeeierms involving
k, andk, vanish for a perfectly symmetric distribution; hence they expected
to be quite small for a cratered source.

The last term, which involves the number of counig, in the central pixel, will
be small for a cratered source where most of the counts drébdied away from
the center. However, for a non-cratered sourgg will be quite large making
this term very negative and most likely the most dominamhter the numerator.
Hence for a non-cratered point source at the center of therre@ will most
likely be negative.

Now consider the effect of the last term for a regiothat contains mainly back-
ground events. In this case, the valueigf, will be representative of all the other
values ofn,, in the region. Since there arek* pixels in the regionngom R? will
be a value that is approximately equal the observed numbeowits)M in the
region. In this scenario the value of the last term will be etiring like M/ R? /2.
For this reason, thé; may be regarded as the background contributioh &md
as such,

r=+/I-I)/M (18)

can be taken as the definition of the radius of the crateradsté equation (10).

The above considerations imply that the numerator of eqndfi4) will be rela-
tively large and positive when the region contains a crétes aenter, and will be
relatively small or negative otherwise. The denominatdricl is proportional to
the ratio of the number of counts in the core to that outsiéectire, will tend to
further increase the magnitude’Bfwhen the region contains a crater.

For the above reasong, may be regarded as a statistic that may be used to test
for the presence of a crater at center of a regiori’ i§ large and positive, then
the region is likely to contain a crater at its center/'lfs small or negative, then

the region is unlikely to contain a crater.



3 Region Mask

There are some problems with the simple statistgiven by equation (14) of the
previous section. One problem arises for bright backgraegdns that contain
many counts, such as regions in the scattering wings or Haddboight source.
Here statistical fluctuations in the count distribution Icbresult in cases where
T is quite large. This section describemask that may be used to filter out such
regions.

For a large enough region centered upon a crater, the regimud contain a
minimum number of counts. Call this numbgf,;,. Then the first part of the
mask may be expressed in the form

M > Moy (19)
An estimate ofM,,;, IS given in the appendix.

The second part of the mask constrains the center of ther toabe at the center
of the region. From equations 2 and 3, the distance from theecef the region

to the center of the crater can be taken to,s€ + I2/M. Hence the constraint
that the center of the crater should be less than one pixel the region center

can be written as the mask
/12 + Ig < k4M. (20)

It is easy to imagine that the above two constraints can lisfiedtby a uniformly
distributed count distribution provided thaf is large enough. What is needed is
a constraint that masks out uniformly distributed regioBsch a constraint can
be formulated in mathematical terms as follows.

Suppose that the regidnis partitioned into two subregions with aredsand A,
and with mean counts per pixel; andm,, respectively. The mean count density
of the combined region is given by

Ay + Agmg



whereA = A; + A,. The variance Varm| in the mean count density for combined
region is defined to be

Var[m] = % Z (mij — m)2 + % Z (mij — m)Q, (22)

iJEAL ijEAs
which can be written in terms of the individual subregioniaaces as

A1 Ay

A A
Var[m] = =Var[m,] + —2Var[ms] + 1

1 N (my — my)?. (23)

If the counts in the subregions are Poisson distributedy WYee{m,| ~ m, and
Var[ms] ~ ms, with the result

A1 A
AQ

If both the subregions have the same underlying Poissoniigon, then the
term involving the difference in the observed means — m,| can be neglected
leaving Vafm| ~ m. In other words, a region consisting of a uniform distributi
of Poisson-distributed counts will have a variance of therage count density.
However, if the region is not uniformly distributed, theretlast term, which scales
as the square of the differenge, — m4, can be much larger than. Hence, a
mask that picks out non-uniformly distributed regions camwlitten as

Varlm| =~ m + (g — 1) (24)

Varim] > m + ksm?, (25)

wherek; is a small non-zero constant.

4 Summary

In this work, a static for use in a pile-up crater detectiaqgoathm was proposed
in the form of equation (14). To cut down on the number of fals¢ections,
the statistic should only be applied to regions of the im#ge $atisfy the set of
constraints given in equations 19, 20, and 25. These edsatiepend upon a
number of fixed parameters, whose suggested values are igitka following
table:



k1 4
ko 1
ks 0.5
ky 1.5
ks | 0.25
Mpin | 0.35
R 9
r 2.5

These values were empirically determined via trial andreaiod as such are most
likely subject to change in a future update.

A An estimate of M,

A crater will start to form when the observed count rate a&ghe core of the
PSF becomes comparable with the count rate in the core.dfunitreases in the
source flux will increase the count rate outside the core &utedse the rate in
the core. Letf denote the average number of charge-clouds per frame inGie C
from a point source, and let be the fraction that is contained in the core. Then
the per frame count-rat&/, in the core may be estimated by

MO _ Zak’fl (‘rf;)ke

(26)

= k!
¢y ; Kl 27)
= e_zfé(e‘”f - 1) (28)

wherea is the probability that two overlapping charge clouds willgyrise to an
event. Assume that there atendependent detection cells outside the core. Then
it is straightforward to show that the expected per-framentwate outside the
core is given by X

M, = ne’(l’x)f/"—(ea(l’x)f/" —1). (29)
e}
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Figure 2: Figure showing a plot of the ratio of the number of counts pame outside
the core to those in the core vs the total number of countsraerd for various values of
z anda. The solid curves correspond to= 0 and the dashed curves are tor= 0.5.
The red, green, and blue curves correspond to valuaseafual to 0.85, 0.9, and 0.95,
respectively.

Cratering will occur when\f; /M, > 1. Figure 2 shows a plot ol; /M, vs
M = M,y + M, for various values ofr andz for n = 3. The figure shows that the
smallest value of\f occurs fora = 0, andf = 0.95, wherel is a bit less than
0.3. Since this value af is a bit unrealistic, a value aof/,,;, = 0.35 was felt to
be a reasonable compromise.

B Implementation Notes

A naive computation of" as given by equation (14) is rather straight-forward. For
example, here is pseudo-code that computes the momdmat contributes td’
for the region centered &, jo:

iR = (int)(R+0.5); / * round to nearest integer */



ly = 0;
for (i = i0-iR; i <= iO+R; i++)

if (i < 0) || (i >= nx)) continue;
for (j = jO-IR; j <= jO+iR; j++)

{

if ( <0) |l >= ny)) continue;

if ((-j0)'2 + (i-i0)"2 > R"2) continue;
} Ly += (-j0)  =ml[ij];

However for values of greater than about 3, it is much better to cast the compu-
tation in terms of correlation integrals and make use of Fééspute the correla-
tions. See th&-Lang reference implementation for an example of this approach.
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