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LISA forewarnings
Multi-band GW observations with               binaries

Sesana 2016 

LISA will predict when (time) and where (frequency) the 
merger will happen in LIGO with years of forewarning!

• Catch counterparts, if any 

• Constrain low-PN modifications of 
GR like dipole emission 

• Eccentricity measurements to 
constrain formation channels 

• Improve LIGO parameter estimation 

• New class of standard sirens 

• Stay tuned for a white paper…

Sesana 2016 

Barausse+ 2016 

Nishizawa+ 2016, Brievik+ 2016  
Samsing D’Orazio 2018

Vitale+ 2016

Del Pozzo+ 2016

Multi-band GW science

30M�



Can we get ready for that?
We know a source is coming and have some knowledge of it 

Masses ok but probably no spins info…

Easy: make sure ground-based detectors are operating. 
Plan detector upgrades and duty cycle accordingly. 
Hard: change the optical configuration of the ground-
based interferometer targeting that specific GW source. 

Can we maximize the scientific return of the ground-based observations? 

This talk:  
proof of principle to 

explore the potentials of 
the hard way…



Optimized narrow-banding
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Better catch a feature of the signal somewhere in frequency 



Black-hole spectroscopy
Testing the Kerr nature of astrophysical BHs with their ringdown emission

Inspiral Merger
Ringdown

Analytical meets numerical relativity 2

Inspiral Merger Ringdown
post-Newtonian (PN) theory no analyt. model perturbation theory
E↵ective-one-body (EOB)

Numerical Relativity (NR)

Figure 1. The dominant spherical harmonic mode of the gravitational wave signal of two
coalescing (nonspinning) BHs as a function of time. The different approximation schemes and
their range of validity are indicated. Wavy lines illustrate the regime close to merger where
analytical methods have to be bridged by NR.

Without further information, however, all these analytical schemes break down at some
point prior to the merger of both BHs, and a second approach has to be used to model the
dynamics from the late inspiral through the merger: numerical relativity (NR). In NR, the
full Einstein equations are usually solved discretely on a finite grid that is adapted to the
movement of the two bodies, and the resolution in space and time is chosen fine enough to
obtain a converging result. The GW content is extracted at finite radii and then extrapolated to
infinity, or it is directly extracted at null infinity via Cauchy-characteristic extraction [14, 15].
For current overviews of the field see for example [16–20].

Both numerical and analytical approaches have their limitations. The PN-based formu-
lations are, by construction, not valid throughout the entire coalescence process; NR relies on
computationally very expensive simulations that become increasingly challenging (and time-
consuming) with larger initial separations, higher spin magnitudes of the BHs and higher
mass-ratios q = m1/m2 (mi are the masses of the individual BHs and we use the convention
m1 � m2). Thus, to build models of the complete inspiral, merger and ringdown signal, one
has to combine information from both analytical and numerical approximations. See Fig. 1
for an illustration of the dominant harmonic mode of a nonspinning binary.

These ‘complete’ waveforms are indispensable to perfect current search strategies. They
constitute our best and most complete approximation of the real signals that we are trying to
detect, which makes them ideal target waveforms in a simulated search to test existing analysis
algorithms. The Numerical INJection Analysis (NINJA) project [21, 22] is dedicated to that
question. The other important application of complete waveforms is to derive an analytical
model from them which leads to an improved template bank in the search. The improvement
manifests itself, e.g., in a wider detection range and a more accurate extraction of the physical
information encoded in the signals. Ongoing searches with such templates in LIGO data are
summarized for instance in [23].

This paper briefly describes the efforts to build complete waveform models by combining
analytical approximants and NR into individual signals and eventually entire waveform fami-
lies. Our focus then turns to the question of how reliable and accurate such final models are.
After all, one expects (and finds) a smooth connection between the two parts of a supposedly
common GW signal, but the use in actual analysis algorithms of GW interferometers requires
a much deeper error analysis with a quantitative understanding of the uncertainty introduced
in the modelling process.

=+ + …
Dominant mode First subdominant Infinitely many Ringdown signal

(f, ⌧) ! (M, j) (f, ⌧) ! (M, j)

In GR, Kerr BHs only have mass M and spin j 

That’s challenging! Subdominant modes are weak. Many ideas...

Measurement of one mode is an estimate of (M,j) 
Measurement of any additional mode is a test of the theory 

Berti+ 2016, Maselli+2017, Baibhav+2018, Yang+ 2017



Atom’s spectral lines: identify elements 
and test quantum mechanics 

Xkcd

=+

Quasi-normal modes: probe the 
nature of BHs and test gravity

Detwiler+ 1980

Black-hole spectroscopy



Optimizing LIGO for BH science

Adhikari 2014

Optimizing the quantum noise contribution
• Input optical power 
• Signal recycling mirror transmissivity 
• Cavity tuning phases 
• Squeeze factors 
• etc…

eter and lost. A mirror located between the beam splitter and the 

output port will either decrease or increase the detection bandwidth, 

depending on the reflectivity and microscopic position of the mirror. 

Signal recycling refers to a decrease in detection bandwidth and an 

increase in peak sensitivity.  Resonant sideband extraction (RSE), on 

the other hand, makes the detector more broadband at the expense 

of peak sensitivity.

Resonant sideband extraction facilitates high stored arm power with 

only minimal power recycling. This reduces power absorption of the 

beam splitter and input test masses. The narrow-band arm cavities 

then accomplish most of the power recycling, and RSE allows the de-

tection bandwidth to remain broad.

In a 1993 publication, Mizuno and coauthors warn the reader against 

confusion of RSE with signal recycling. This warning was not heeded 

when the Advanced LIGO subsystems were being named! It may come 

as a surprise to some members of the collaboration to learn that the 

technique used in Advanced LIGO is RSE, not signal recycling.  In com-

bination with each other, recycling and extraction techniques provide 

designers of gravitational wave interferometers with several indepen-

dent knobs to tune the interferometer’s optical sensitivity.

How does it Work? Signal Liberation

Gravitational wave interferometers are incredibly complicated ma-

chines with multitudes of possible configurations. The sheer number of 

parameters necessary to describe a particular configuration is daunting. 

Despite the high dimensionality of the configuration space, the peak 

strain sensitivity of the interferometer related to the optical system 

depends on just three parameters: the laser wavelength, the detection 

bandwidth of the interferometer, and the total light energy stored in 

the system. Collectively known as the Mizuno limit, these factors moti-

vate our choice of optical parameters in order to optimize the interfer-

ometer’s sensitivity to gravitational waves.  

The Fabry-Perot arms of LIGO’s interferometers consist of a partially 

transmissive input test mass (ITM) and a highly reflective end test mass. 

The arms enhance the gravitational wave signal by forcing the light to 

circulate many times before detection (see How does it work? An opti-

cal cavity, LIGO Magazine Issue 1). From the point of view of the Mizuno 

limit, a change in ITM reflectivity modifies both the amount of stored 

light energy and the detection bandwidth. However with the use of ad-

ditional partially transmissive optics at the input and output ports of 

the interferometer, it is possible to adjust the stored energy and de-

tection bandwidth independently. A power recycling mirror located 

between the beam splitter and the laser can increase the stored energy 

by recycling light that would normally be reflected by the interferom-

Nicolas Smith

32

As an example of narrow-banding, 
here we explore cavity detuning

This is probably very hard in practice 
(tested on the 40m prototype)

LIGO magazine

Ward 2010

… this is LIGO for theorists

Previous explorations:
• NS post-merger signals 
• Stochastic background

Hughes 2002, Miao+ 2017, Martynov+ (in prep)
Tao Christernsen 2018

Advanced LIGO noise budget
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What should we optimize for?

3

configuration corresponds to TSRM = 0.2, �SRM = 0 and
�hd = ⇡/2. The broadband noise curves reported by
[57, 58] are reproduced within � logSn/ logSn . 0.2%
throughout the entire frequency band.

Mode Consistency– The main idea behind BH spec-
troscopy is to assume that quasi-normal modes frequen-
cies !lm and decay times ⌧lm depend separately on M
and j, and then look for consistencies between the dif-
ferent estimates1. Considering the 22 and 33 modes
only, one can write the waveform as h = h22(M22, j22) +
h33(M33, j33) and use data to estimate the parameters
� = {M22, j22,M33, j33}. Here we present results of a
Fisher analysis, which provide a conservative lower bound
on the standard deviations [59] (but see [60]). The Fisher
information matrix is defined as �ij = (@h̃/@�i|@h̃/@�j),
where parenthesis indicate the standard noise-weighted
inner product. Standard deviations and correlations are
given by �2

i = ��1

ii and �ij = ��1

ij .
We propose two approaches to estimate consistency

between the two modes.
(i) We first break the covariance matrix ��1 into blocks,

��1 =


��1

2222
��1

2233

��1

3322
��1

3333

�
(6)

corresponding to the couples {M22, j22} and {M33, j33}.
The diagonal blocks ��1

2222
and ��1

3333
can be used to con-

struct confidences ellipses [61]. This procedure is useful
to visually assess the accuracy of the two estimates, but
fails to properly capture the correlations contained in the
off-diagonal terms.
(ii) One can consider random variables ��i describing
fractional errors on the parameters of �i, such that
their expectation values averaging over many realization
is h��i��ji = ��1

ij /�i�j . We construct the discrepan-
cies on the mass and spin inferred from the two modes
�M = �M22 � �M33 and �j = �j22 � �j33, and define the
following estimator

�GR =

����
h�M2

i h�M�ji
h�j�Mi h�j2i

����
1/4

(7)

to quantify the goodness of test of the theory. If the
underlying theory of gravity is indeed GR (i.e. if M22=
M33⌘M and j22=j33⌘j), one obtains

�GR =
1

p
Mj

h�
�2

M22
�2�M22M33+�2

M33

�
(�2

j22 �2�j22j33

+�2

j33)�(�M22j22+�M33j33 ��M22j33 ��M33j22)
2
i1/4

. (8)

One has a perfect consistency test if �GR = 0, corre-
sponding to ��1 = 0. Large values of �GR imply poor

1 For simplicity we only vary !lm and ⌧lm while keeping ↵lm fixed
to their GR values.

FIG. 2. 1-� confidence ellipses for the 22 (dashed) and 33
(solid) modes observed by LIGO in its designed (blue) and
optimized narrowband configuration (orange). The source is
a perturbed Kerr BH of mass M = 62.5M� and spin j = 0.68
(dotted lines), resulting from the merger of a GW150914-like
system (m1+m2 = 65M�, q = 0.8, ◆ = 150�, � = 0) assuming
optimal orientation (✓ = � =  = 0) and optimistic luminosity
distance D = 40 Mpc. The latter choice was made to mimic
results from future-generation detectors.

constraints on the underlying theory. If correlations be-
tween the 22 and the 33 mode can be neglected (i.e.
��1

2233
' ��1

3322
' 0), �GR is proportional to (the square

root of) the area of the confidence ellipse constructed from
��1

2222
+ ��1

3333
. Given values of �GR from both a design

and detuned configuration, we define the narrowband gain
as

⇣ =
�GR(Design)

� �GR(Optimized)

�GR(Design)
, (9)

where ⇣=1 (⇣=0) means that the narrowbanding proce-
dure is maximally effective (irrelevant).

Results– For each given source, we select the optimal noise
curve that minimizes �GR among those we precomputed
varying over tune phase, mirror transmittance, and ho-
modyne phase. Figure 1 illustrates this procedure for
an optimally oriented source similar to GW150914 [1].
This optimized narrowband setting corresponds to a noise
curve with �SRM ' 0.21, TSRM ' 0.02 and �hd ' 2.24.

Confidence ellipses constructed from ��1

2222
and ��1

3333

are shown in Fig. 2 for a similar GW150914-like source
but at the optimistic distance D = 40 Mpc. This value
is consistent with the closest GW source detected so far
[62] and correspond to ⇠ 1/10 of the actual distance of
GW150914. This choice makes the results of Fig. 2 in-
dicative of detections with future ground-based detectors
which are expected to take data in the 2030s together
with LISA.

The behavior of the ellipses of Fig. 2 illustrates the
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modyne phase. Figure 1 illustrates this procedure for
an optimally oriented source similar to GW150914 [1].
This optimized narrowband setting corresponds to a noise
curve with �SRM ' 0.21, TSRM ' 0.02 and �hd ' 2.24.

Confidence ellipses constructed from ��1

2222
and ��1

3333

are shown in Fig. 2 for a similar GW150914-like source
but at the optimistic distance D = 40 Mpc. This value
is consistent with the closest GW source detected so far
[62] and correspond to ⇠ 1/10 of the actual distance of
GW150914. This choice makes the results of Fig. 2 in-
dicative of detections with future ground-based detectors
which are expected to take data in the 2030s together
with LISA.

The behavior of the ellipses of Fig. 2 illustrates the

h = h22(M22, j22) + h33(M33, j33)In the spirit of BH spectroscopy:

Construct Fisher matrix:

Confidence ellipses

��1
2222 ��1

3333

Consider 2x2 diagonal blocks 

and draw confidence ellipses for (M,j)

Spectroscopy estimator
Consider random variables 

and construct a Fisher-like quantity 
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configuration corresponds to TSRM = 0.2, �SRM = 0 and
�hd = ⇡/2. The broadband noise curves reported by
[57, 58] are reproduced within � logSn/ logSn . 0.2%
throughout the entire frequency band.

Mode Consistency– The main idea behind BH spec-
troscopy is to assume that quasi-normal modes frequen-
cies !lm and decay times ⌧lm depend separately on M
and j, and then look for consistencies between the dif-
ferent estimates1. Considering the 22 and 33 modes
only, one can write the waveform as h = h22(M22, j22) +
h33(M33, j33) and use data to estimate the parameters
� = {M22, j22,M33, j33}. Here we present results of a
Fisher analysis, which provide a conservative lower bound
on the standard deviations [59] (but see [60]). The Fisher
information matrix is defined as �ij = (@h̃/@�i|@h̃/@�j),
where parenthesis indicate the standard noise-weighted
inner product. Standard deviations and correlations are
given by �2

i = ��1

ii and �ij = ��1

ij .
We propose two approaches to estimate consistency

between the two modes.
(i) We first break the covariance matrix ��1 into blocks,

��1 =


��1

2222
��1

2233

��1

3322
��1

3333

�
(6)

corresponding to the couples {M22, j22} and {M33, j33}.
The diagonal blocks ��1

2222
and ��1

3333
can be used to con-

struct confidences ellipses [61]. This procedure is useful
to visually assess the accuracy of the two estimates, but
fails to properly capture the correlations contained in the
off-diagonal terms.
(ii) One can consider random variables ��i describing
fractional errors on the parameters of �i, such that
their expectation values averaging over many realization
is h��i��ji = ��1

ij /�i�j . We construct the discrepan-
cies on the mass and spin inferred from the two modes
�M = �M22 � �M33 and �j = �j22 � �j33, and define the
following estimator

�GR =

����
h�M2

i h�M�ji
h�j�Mi h�j2i

����
1/4

(7)

to quantify the goodness of test of the theory. If the
underlying theory of gravity is indeed GR (i.e. if M22=
M33⌘M and j22=j33⌘j), one obtains

�GR =
1

p
Mj

h�
�2

M22
�2�M22M33+�2

M33

�
(�2

j22 �2�j22j33

+�2

j33)�(�M22j22+�M33j33 ��M22j33 ��M33j22)
2
i1/4

. (8)

One has a perfect consistency test if �GR = 0, corre-
sponding to ��1 = 0. Large values of �GR imply poor

1 For simplicity we only vary !lm and ⌧lm while keeping ↵lm fixed
to their GR values.
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FIG. 2. 1-� confidence ellipses for the 22 (dashed) and 33
(solid) modes observed by LIGO in its designed (blue) and
optimized narrowband configuration (orange). The source is
a perturbed Kerr BH of mass M = 62.5M� and spin j = 0.68
(dotted lines), resulting from the merger of a GW150914-like
system (m1+m2 = 65M�, q = 0.8, ◆ = 150�, � = 0) assuming
optimal orientation (✓ = � =  = 0) and optimistic luminosity
distance D = 40 Mpc. The latter choice was made to mimic
results from future-generation detectors.

constraints on the underlying theory. If correlations be-
tween the 22 and the 33 mode can be neglected (i.e.
��1

2233
' ��1

3322
' 0), �GR is proportional to (the square

root of) the area of the confidence ellipse constructed from
��1

2222
+ ��1

3333
. Given values of �GR from both a design

and detuned configuration, we define the narrowband gain
as

⇣ =
�GR(Design)

� �GR(Optimized)

�GR(Design)
, (9)

where ⇣=1 (⇣=0) means that the narrowbanding proce-
dure is maximally effective (irrelevant).

Results– For each given source, we select the optimal noise
curve that minimizes �GR among those we precomputed
varying over tune phase, mirror transmittance, and ho-
modyne phase. Figure 1 illustrates this procedure for
an optimally oriented source similar to GW150914 [1].
This optimized narrowband setting corresponds to a noise
curve with �SRM ' 0.21, TSRM ' 0.02 and �hd ' 2.24.

Confidence ellipses constructed from ��1

2222
and ��1

3333

are shown in Fig. 2 for a similar GW150914-like source
but at the optimistic distance D = 40 Mpc. This value
is consistent with the closest GW source detected so far
[62] and correspond to ⇠ 1/10 of the actual distance of
GW150914. This choice makes the results of Fig. 2 in-
dicative of detections with future ground-based detectors
which are expected to take data in the 2030s together
with LISA.

The behavior of the ellipses of Fig. 2 illustrates the

GW150914-like source…
m1 +m2 = 65M� q = 0.8
◆ = 150� � = 0 optimally oriented

D = 40Mpc

M = 62.5M� j = 0.68

… but 10 times closer

Perturbed BH:

Broadband: only the 
dominant mode 
Optimized: greatly improve 
the subdominant mode, while 
losing a bit of the other one 

Test of GR is a factor of 2 stronger!
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Potential narrowband gain4

main point of our analysis. In the standard broadband
configuration, the 22 mode is observed very well, thus
resulting in a small confidence region. At the same time,
the 33 mode is observed poorly resulting in a large ellipse.
As in the case of current events [63], this is roughly equiv-
alent to a single measurement of M and j based on the 22
mode only, rather than a test of the theory. Narrowband
tunings boost the detectability of the 33 mode, while
marginally reducing that of the dominant 22 excitation.
Consequently, the two confidence ellipses are more similar
to each other, resulting in a more powerful constraint of
the Kerr metric. For this specific source, narrowband
tunings boost prospects to perform BH spectroscopy from
�GR = 0.06 to �GR = 0.03, thus offering the opportunity
to improve constraints on the BH no-hair theorems by
⇣ = 50%.

Let us now assess the impact of this procedure as a
function of the source properties. We generate a popula-
tion of sources drawing cos ✓ and cos ◆ uniformly in [�1, 1]
and �,� and  uniformly in [�⇡,⇡] with fixed2 distance
D = 100 Mpc. Fig. 3 shows the median values of �GR
as a function of the masses of the merging BHs. The
top panel assumes LIGO in its design configuration, the
middle panel presents results optimizing the narrowband
setup individually for each source, while the gain ⇣ is
shown in the bottom panel.

A few interesting trends are present. First, the best
systems to perform BH spectroscopy (i.e. low values
of �GR) have intermediate mass ratio 0.3 . q . 0.7.
Both ringdown amplitudes ↵22 and ↵33 are suppressed
for q ! 0, while ↵22 � ↵33 for q ! 1. Second, tests
of GR are weaker (higher �GR) for lower mass systems.
These binaries have f33 close to the edge of the sensitivity
window of the interferometer, thus making mode distin-
guishability harder. The LISA SNR also increases with
the total mass: binaries with m1 +m2 . 40M� are not
likely to be associated with confirmed forewarnings.

A key point of our findings is illustrated in the gain
values ⇣ reported in the bottom panel of Fig. 3. From
Eq. (9), ⇣ quantifies the potential improvement in BH
spectroscopy achievable with narrowband tunings. Me-
dian gains are larger than 25% over the entire parameter
space, and individual sources can reach values up to 50%.
In particular, higher gains are achieved for large-q systems.
This agrees with the expectation that both modes are
suppressed at q ! 0, while only the 33 mode is suppressed
at q ! 1. Narrowband tunings shift the detector sensitiv-
ity closer to f33 at the expense of the 22 mode, and are
thus more effective if its excitation is large such that the
resulting sensitivity loss can be more easily absorbed.

Caveats– The possibility of optimizing ground-based oper-
ation assumes that LISA observations accurately predict

2 Since �GR is directly proportional to D, results in Fig. 3 can be
rescaled to different distances. Cosmological effects might push
the ringdown frequencies of some high-mass events out of band,
thus somewhat decreasing the gain.
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FIG. 3. Top and middle panels show median values of �GR
for LIGO at design sensitivity and with narrowband tuning,
respectively; bottom panel shows the median gain ⇣. Data are
shown as a function of total mass m1 +m2 and mass ratio q
of the merging binaries; medians are computed over ✓, ◆,�,�
and  . The distance is fixed to D = 100 Mpc. Binaries to
the right of the dashed lines have sky-averaged LISA SNRs
greater than 8 (these are computed following [3] using the
update noise curve of [33]; the initial frequency is estimated
such that the binary merges in 5 years). Triangles indicate
measured LIGO events [1, 64–67].

the ringdown frequencies (in particular f33), thus pro-
viding information on how ground-based interferometers
should be optimized. We estimate LISA errors on f33
as follows. For a given source with chirp mass Mc and
symmetric mass ratio ⌘, we first estimate f33 assuming
zero spins (this is our working assumption used above).
Inspired by the results reported in Fig. 3 of [3] (computed
as in [68]), we model LISA errors as lognormal distribu-
tions centered at �Mc/Mc = 10�6, �⌘/⌘ = 6⇥10�3 with
widths � = 0.5. We then calculate f33 for a new binary
with masses Mc+�Mc and ⌘+�⌘ and spins with magni-
tudes uniform in [0, 1] and isotropic directions. In practice,
we are assuming that LISA will not provide any informa-
tion on the spins. This is a conservative, but realistic,
assumption because spins enter at high post-Newtonian
order and are probably going to be very challenging to
detect at low frequencies. This procedure is iterated over
a population of sources with masses uniformly distributed
in [10, 100]M�. The median of the errors �f33 is 11 Hz,
while the 90th percentile is 46 Hz. For the case of cavity
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3

configuration corresponds to TSRM = 0.2, �SRM = 0 and
�hd = ⇡/2. The broadband noise curves reported by
[57, 58] are reproduced within � logSn/ logSn . 0.2%
throughout the entire frequency band.

Mode Consistency– The main idea behind BH spec-
troscopy is to assume that quasi-normal modes frequen-
cies !lm and decay times ⌧lm depend separately on M
and j, and then look for consistencies between the dif-
ferent estimates1. Considering the 22 and 33 modes
only, one can write the waveform as h = h22(M22, j22) +
h33(M33, j33) and use data to estimate the parameters
� = {M22, j22,M33, j33}. Here we present results of a
Fisher analysis, which provide a conservative lower bound
on the standard deviations [59] (but see [60]). The Fisher
information matrix is defined as �ij = (@h̃/@�i|@h̃/@�j),
where parenthesis indicate the standard noise-weighted
inner product. Standard deviations and correlations are
given by �2

i = ��1

ii and �ij = ��1

ij .
We propose two approaches to estimate consistency

between the two modes.
(i) We first break the covariance matrix ��1 into blocks,

��1 =


��1

2222
��1

2233

��1

3322
��1

3333

�
(6)

corresponding to the couples {M22, j22} and {M33, j33}.
The diagonal blocks ��1

2222
and ��1

3333
can be used to con-

struct confidences ellipses [61]. This procedure is useful
to visually assess the accuracy of the two estimates, but
fails to properly capture the correlations contained in the
off-diagonal terms.
(ii) One can consider random variables ��i describing
fractional errors on the parameters of �i, such that
their expectation values averaging over many realization
is h��i��ji = ��1

ij /�i�j . We construct the discrepan-
cies on the mass and spin inferred from the two modes
�M = �M22 � �M33 and �j = �j22 � �j33, and define the
following estimator

�GR =

����
h�M2

i h�M�ji
h�j�Mi h�j2i

����
1/4

(7)

to quantify the goodness of test of the theory. If the
underlying theory of gravity is indeed GR (i.e. if M22=
M33⌘M and j22=j33⌘j), one obtains

�GR =
1

p
Mj

h�
�2

M22
�2�M22M33+�2

M33

�
(�2

j22 �2�j22j33

+�2

j33)�(�M22j22+�M33j33 ��M22j33 ��M33j22)
2
i1/4

. (8)

One has a perfect consistency test if �GR = 0, corre-
sponding to ��1 = 0. Large values of �GR imply poor

1 For simplicity we only vary !lm and ⌧lm while keeping ↵lm fixed
to their GR values.

FIG. 2. 1-� confidence ellipses for the 22 (dashed) and 33
(solid) modes observed by LIGO in its designed (blue) and
optimized narrowband configuration (orange). The source is
a perturbed Kerr BH of mass M = 62.5M� and spin j = 0.68
(dotted lines), resulting from the merger of a GW150914-like
system (m1+m2 = 65M�, q = 0.8, ◆ = 150�, � = 0) assuming
optimal orientation (✓ = � =  = 0) and optimistic luminosity
distance D = 40 Mpc. The latter choice was made to mimic
results from future-generation detectors.

constraints on the underlying theory. If correlations be-
tween the 22 and the 33 mode can be neglected (i.e.
��1

2233
' ��1

3322
' 0), �GR is proportional to (the square

root of) the area of the confidence ellipse constructed from
��1

2222
+ ��1

3333
. Given values of �GR from both a design

and detuned configuration, we define the narrowband gain
as

⇣ =
�GR(Design)

� �GR(Optimized)

�GR(Design)
, (9)

where ⇣=1 (⇣=0) means that the narrowbanding proce-
dure is maximally effective (irrelevant).

Results– For each given source, we select the optimal noise
curve that minimizes �GR among those we precomputed
varying over tune phase, mirror transmittance, and ho-
modyne phase. Figure 1 illustrates this procedure for
an optimally oriented source similar to GW150914 [1].
This optimized narrowband setting corresponds to a noise
curve with �SRM ' 0.21, TSRM ' 0.02 and �hd ' 2.24.

Confidence ellipses constructed from ��1

2222
and ��1

3333

are shown in Fig. 2 for a similar GW150914-like source
but at the optimistic distance D = 40 Mpc. This value
is consistent with the closest GW source detected so far
[62] and correspond to ⇠ 1/10 of the actual distance of
GW150914. This choice makes the results of Fig. 2 in-
dicative of detections with future ground-based detectors
which are expected to take data in the 2030s together
with LISA.

The behavior of the ellipses of Fig. 2 illustrates the

Isotropic population of  
BH binaries at

Median �GR

Median gain

• Stronger tests for high masses      
(ringdown in band). Higher LISA SNR 

• Weak test for q~1 and q~0   
(excitations suppressed)

D = 100Mpc

Gain between 25% and 50% 
everywhere in parameters space



How about 3G?
Cosmic explorer

Sensitivity Studies for Third-Generation Gravitational Wave Observatories 10

Parameter ET-D-HF ET-D-LF
Arm length 10 km 10 km
Input power (after IMC) 500W 3W
Arm power 3MW 18kW
Temperature 290K 10K
Mirror material Fused silica Silicon
Mirror diameter / thickness 62 cm / 30 cm min 45 cm/ TBD
Mirror masses 200 kg 211 kg
Laser wavelength 1064 nm 1550 nm
SR-phase tuned (0.0) detuned (0.6)
SR transmittance 10% 20%
Quantum noise suppression freq. dep. squeez. freq. dep. squeez.
Filter cavities 1⇥ 10 km 2⇥ 10 km
Squeezing level 10 dB (e↵ective) 10 dB (e↵ective)
Beam shape LG33 TEM00

Beam radius 7.25 cm 9 cm
Scatter loss per surface 37.5 ppm 37.5 ppm
Partial pressurefor H2O, H2, N2 10�8, 5 · 10�8, 10�9 Pa 10�8, 5 · 10�8, 10�9 Pa
Seismic isolation SA, 8m tall mod SA, 17m tall
Seismic (for f > 1Hz) 5 · 10�10 m/f2 5 · 10�10 m/f2

Gravity gradient subtraction none none

Table 1. Summary of the most important parameters of the ET-D high and
low-frequency interferometers as shown in Figure 5. SA = super attenuator, freq.
dep. squeez. = squeezing with frequency dependent angle.
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Figure 6. Historical evolution of sensitivity models for the Einstein Telescope,
starting from a single cryogenic broadband detector (ET-B) [11], over the initial
xylophone design (ET-C) [13] to the ET-D sensitivity described in this article.

we significantly refined the xylophone concept and obtained the ET-D sensitivity,
which is slightly worse than the ET-C sensitivity, but much more realistic. The loss
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The second-generation of gravitational-wave detectors are just starting operation, and have al-
ready yielding their first detections. Research is now concentrated on how to maximize the scientific
potential of gravitational-wave astronomy. To support this e↵ort, we present here design targets for
a new generation of detectors, which will be capable of observing compact binary sources with high
signal-to-noise ratio throughout the Universe.

I. INTRODUCTION

With the development of extremely sensitive ground-
based gravitational wave detectors [1–3] and the recent
detection of gravitational waves by LIGO [4, 5], exten-
sive theoretical work is going into understanding poten-
tial gravitational-wave (GW) sources [6–15]. In order to
guide this investigation, and to help direct instrument re-
search and development, in this letter we present design
targets for a new generation of detectors.

The work presented here builds on a previous study
of how the fundamental noise sources in ground-based
GW detectors scale with detector length [16, 17], and
is complementary to the detailed sensitivity analysis of
the Einstein Telescope (ET, a proposed next generation
European detector) presented in [18, 19]. The ET anal-
ysis will not be reproduced in this work, but the ET-D
sensitivity curve from [18] is used for comparison. It rep-
resents one 10 km long detector consisting of two inter-
ferometers [20], the detector arms forming a right angle.
The ET design consists of three co-located detectors in
a triangular geometry [21], but for the purpose of this
letter we compare the sensitivity of single detectors, all
with arms at right angles. (A comparison of triangular
and right angled detector sensitivities can be found in
[22].)

From this work two important conclusions emerge.
The first of these is that the next generation of GW detec-
tors will be capable of detecting compact binary sources
with high signal to noise ratio (SNR > 20) even at high
redshift (z > 10). The second is that there are multi-
ple distinct areas of on-going research and development
(R&D) which will play important roles in determining
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FIG. 1. Target sensitivity for a next generation gravitational-
wave detector, known as “Cosmic Explorer” for its ability to
receive signals from cosmological distances. The solid curves
are for a 40 km long detector, while the dashed grey curves
show the sensitivity of shorter, but technologically similar de-
tectors; lengths are 4, 10 and 20 km. The Advanced LIGO
and Einstein Telescope design sensitivities are also shown for
reference.

the scientific output of future detectors.
In what follows, we start by expressing the sensitivity

of a next-generation GW detector as a collection of target
values for each of the fundamental noise sources. This is
followed by discussions of the R&D e↵orts that could
plausibly attain these goals in the course of the next 10
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a wide frequency range 

Einstein Telescope
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Optimistic design is a sum of two 
interferometers, one of them is detuned
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