3D Simulations of Core-Collapse Supernovae

Nucleosynthesis During Compact Object Mergers

Luke Roberts
Caltech
What is the source of the r-process?

- Long time emphasis on CCSNe as the source of the r-process, pretty easy to make GCE work, but problems getting required conditions
- NS-NS, BH-NS mergers now becoming more favored, but maybe some issues with GCE

![Graph](from Roederer et al. ’14)
What is the source of the r-process?

- Long time emphasis on CCSNe as the source of the r-process, pretty easy to make GCE work, but problems getting required conditions
- NS-NS, BH-NS mergers now becoming more favored, but maybe some issues with GCE

From Sneden et al. ‘08
Merger Mass Ejection

- Dynamical Ejecta
 - Material is tidally ejected through the outer Lagrange points
 - GR -> matter ejected from collision region

- Disk winds (e.g. Surman et al. ’08, Wanajo et al. ’11, Just et al. ‘14)

- Disk outflows from viscous heating and alpha recombination
 (Lee et al. ’09, Fernandez & Metzger ’13)

Bauswein et al. ’13
Dynamical Timescale for the Ejected Material:

\[\tau_{ej} \approx 10 \, ms \]

Ejected Material is neutron rich:

\[Y_e \sim 0.05 - 0.4 \]

Tidal material has low initial entropy:

\[S \sim 1 - 30 \]

Initial distribution will be in NSE, clustered around doubly magic nuclei.

Which implies a neutron to seed ratio:

\[\frac{N}{S} \approx \frac{\bar{Z}}{Y_e} - \bar{A} > 100 \]

Can they make r-process nuclei? easy!

see Lattimer & Schramm '76 and Freiberghaus et al. '99
- Pure r-process material
- Fission cycling
- Relatively small dependence on initial conditions
The effect of weak interactions

Lippuner, LR, Duez et al. in prep

Wanajo, et al. ‘14
The effect of weak interactions

Lippuner, LR, Duez et al. in prep

Wanajo, et al. ‘14
Merger Rates

Merger rates from both population synthesis and extrapolation from known NS-NS binary population are very uncertain.

Predicted Merger Rates (from Abadie et al. ’11)

<table>
<thead>
<tr>
<th>Source</th>
<th>R_{low}</th>
<th>R_{re}</th>
<th>R_{high}</th>
<th>R_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS-BH (MWEB$^{-1}$ Myr$^{-1}$)</td>
<td>0.05 [18]e</td>
<td>3 [18]f</td>
<td>100 [18]g</td>
<td></td>
</tr>
<tr>
<td>BH-BH (MWEB$^{-1}$ Myr$^{-1}$)</td>
<td>0.01 [14]h</td>
<td>0.4 [14]i</td>
<td>30 [14]j</td>
<td></td>
</tr>
<tr>
<td>IMRI into IMBH (GC$^{-1}$ Gyr$^{-1}$)</td>
<td>3 [19]k</td>
<td></td>
<td>20 [19]l</td>
<td></td>
</tr>
<tr>
<td>IMBH-IMBH (GC$^{-1}$ Gyr$^{-1}$)</td>
<td>0.007 [20]m</td>
<td></td>
<td>0.07 [20]n</td>
<td></td>
</tr>
</tbody>
</table>

6 known NS-NS binaries will merge within a Hubble time.

Known pulsars in neutron star binaries (from Oslowski et al. ’11)

<table>
<thead>
<tr>
<th>Name</th>
<th>P (ms)</th>
<th>\dot{P} (10^{-18} s/s)</th>
<th>P_{orb} (h)</th>
<th>M_{obs} (M_{\odot})</th>
<th>M_{emp} (M_{\odot})</th>
<th>e</th>
<th>t_{merg} (Gyr)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0737–3039A</td>
<td>27.7</td>
<td>1.74</td>
<td>2.454</td>
<td>1.337$^{+0.005}_{-0.005}$</td>
<td>1.259$^{+0.005}_{-0.005}$</td>
<td>0.088</td>
<td>0.085</td>
<td>1</td>
</tr>
<tr>
<td>J0737–3039B</td>
<td>27.7</td>
<td>8.8$^{+10}_{-10}$</td>
<td>2.454</td>
<td>1.250$^{+0.005}_{-0.005}$</td>
<td>1.337$^{+0.005}_{-0.005}$</td>
<td>0.088</td>
<td>0.085</td>
<td>1</td>
</tr>
<tr>
<td>B2127+11C</td>
<td>31.53</td>
<td>4.99</td>
<td>8.05</td>
<td>1.358$^{+0.01}_{-0.01}$</td>
<td>1.380$^{+0.01}_{-0.01}$</td>
<td>0.681</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>J1906+0746</td>
<td>144.07</td>
<td>2.028$^{+10}_{-10}$</td>
<td>3.098</td>
<td>1.248$^{+0.01}_{-0.01}$</td>
<td>1.365$^{+0.01}_{-0.01}$</td>
<td>0.085</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>H1913+16</td>
<td>59.03</td>
<td>8.63</td>
<td>7.752</td>
<td>1.441$^{+0.005}_{-0.005}$</td>
<td>1.386$^{+0.005}_{-0.005}$</td>
<td>0.617</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>J1756–2251</td>
<td>28.46</td>
<td>1.02</td>
<td>7.67</td>
<td>1.312$^{+0.01}_{-0.01}$</td>
<td>1.258$^{+0.01}_{-0.01}$</td>
<td>0.181</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>B1534+12</td>
<td>37.90</td>
<td>2.43</td>
<td>10.098</td>
<td>1.333$^{+0.01}_{-0.01}$</td>
<td>1.345$^{+0.01}_{-0.01}$</td>
<td>0.274</td>
<td>2.7</td>
<td>1</td>
</tr>
<tr>
<td>J1811–1736</td>
<td>114.18</td>
<td>0.91</td>
<td>41.20</td>
<td>1.62$^{+0.01}_{-0.01}$</td>
<td>1.11$^{+0.01}_{-0.01}$</td>
<td>0.828</td>
<td>>10</td>
<td>1</td>
</tr>
<tr>
<td>J1518+4904</td>
<td>40.935</td>
<td>0.027</td>
<td>207.216</td>
<td>0.72$^{+0.01}_{-0.01}$</td>
<td>2.00$^{+0.01}_{-0.01}$</td>
<td>0.249</td>
<td>>10</td>
<td>1</td>
</tr>
<tr>
<td>J1829+2456</td>
<td>41.004</td>
<td>0.05</td>
<td>28.0</td>
<td>1.14$^{+0.01}_{-0.01}$</td>
<td>1.36$^{+0.01}_{-0.01}$</td>
<td>0.139</td>
<td>>10</td>
<td>1</td>
</tr>
</tbody>
</table>
EoS Dependence of Mass Ejection

- Smaller radius -> larger velocity at collision -> increased mass ejection

- Hotokezaka EoSs: APR4, ALF2, H4, and MS1

- Bauswein EoSs: Finite temperature supernova EoSs
Chemical Evolution Signal

\[M_{r,MW} \sim 10^4 M_\odot \]
\[r_{NS-NS} \sim 10^{-4} \text{yr}^{-1} \]
\[M_{\text{eject}} \sim 10^{-2} M_\odot \]

\[\rightarrow M_{r,NS-NS} \sim 10^4 M_\odot \]

but...

\[t_{\text{coalesce}} \approx 10^{6-8} \text{ yr} \]
\[M_{\text{eject}} \sim 10^{-2} M_\odot \]

from Argast et al. 2004
Dynamically formed binaries in dense stellar clusters

- Form binaries in dense stellar clusters at high-z, either through dynamical capture or GW emission
- Small initial separations, short in-spiral time
- DM halos containing clusters eventually incorporated into the MW halo
Dynamically formed binaries in dense stellar clusters

- Similar r-process mass injection to what is expected from CCSNe
- Possible solution one of the GCE problems for mergers
- First step, more detailed GCE models required

 Ramirez-Ruiz, Trenti, LR, et al. '14
Nuclear Heating Rate

- Larger number of isotopes involved, sum of numerous individual decays
- Power law heating rate (Metzger et al. ’10)
- Beta-decays and fission
- Fairly insensitive to initial conditions (for low Y_e and S)
Optical/Infrared Signal

- Model tidal ejecta as decay heated homologously expanding sphere (Li & Paczynski ’98)
- General properties of transients only depend on four parameters: heating rate, opacity, velocity, and mass of ejected material
- Reasonable values for these parameters predict

\[
L_m \approx 0.88 \beta^{1/2} L_0 = 2.1 \times 10^{44} \text{ ergs s}^{-1}
\]

\[
t_m \approx 1.5 \beta^{1/2} t_c
\]

\[
= 0.98 \text{ days} \left(\frac{M}{0.01 M_\odot} \right)^{1/2} \left(\frac{3V}{c} \right)^{-1/2} \left(\frac{\kappa}{\kappa_e} \right)^{1/2}
\]

\[
T_{\text{eff, } m} \approx 0.79 \beta^{-1/8} T_1 = 2.5 \times 10^4 \text{ K}
\]

from Li & Paczynski ’98
Optical/Infrared Transients from r-process decays

LR, et al. ‘11
SGRB 130603B

- SGRB detected at $z=0.356$ by the Swift BAT
- Early optical detection of afterglow
- Point source seen at the position of the GRB
- Consistent with kilonova with $M\sim0.01$ Msun and $v\sim0.1c$

Tanvir et al. ’13, Berger et al. ‘13
Summary

- BNS and BHNS currently seem more favorable scenarios for r-process production
- Some problems with details of GCE, but some ways around this
- Kilonovae provide opportunity to observe r-process production \textit{in situ}, already have possible first detection
Ejecta Conditions w/o and w/ Neutrinos

Goriely, et al. ‘11

Wanajo, et al. ‘14