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A 'NASA/ESA/STScl/D.Wang et al.; IR: NASA/JPL-
. Caltech/SSC/S.Stolovy
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The X ray Varlébillly
SgrA* .




Outline

Closest example of supermassive black hole variability,
and extremely faint!

Brief introduction to X-ray emission from Sgr A* and the
3 Ms Chandra X-ray Visionary Project

Variability properties, relationship to quiescent emission

X-ray flare statistics (Nowak et al. 2012; Neilsen et
al. 2013Db)

X-ray flux distribution (Neilsen et al. 2014Db)




How Variable is Sgr A*?




How Bright Is Sgr A™?

Not very!!!!

Actually extremely faint:
Ly~3.5x1033 erg s 1~10711
LEdg

Undergoes ~daily X-ray
flares, fewx1034 erg s SGR A*

CREDIT: NASA/UMASS/D. WANG




An Active Past?

~ NASA/CXC/M. WEISS

Giant flares from Sgr A* illuminate molecular clouds



How Faint is Sgr A*”

The scattered flux must exist, and therefore the observed
flux, even if it 1s not due to Thomson scattering, imposes an
upper limit on the averaged X-ray luminosity from the GC
region in the recent past. From the present day X-ray data, it is
evident that the total energy release in this region in the 5-20
keV energy band over the past 400 yr cannot be greater than
~10*® ergs. The nucleus (and its neighborhood) was not
brighter than ~10°°-10°° ergs s~ ' during at least the last
several hundreds of years. Moreover, the nucleus has not
emitted the Eddington luminosity for even a day over the last
400 yr, since otherwise this would be noticeable in the X-ray
images of the diffuse emission.

SUNYAEV ET AL. 1993
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Bang!

Sgr A*: 2.0 - 10.0 keV (c.f. Degenaar et al., 2013)
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How Little We Know

Whole industry devoted to supermassive black hole
accretion: blazars, quasars, LLAGN; variability, spectral
energy distributions (SEDs), outflows

SgrA*
Why is it so faint?
How does it vary?
~Dally flares; what causes them?

What sets the duty cycle of large outbursts?




Chandra and Sgr A”

To understand X-ray e SohdeDoor
emission from Sgr A*,

need high spatial \
resolution, high spectral
resolution, and lots of
exposure time!

Aspect Camera
Stray Light Shade

Chandra X-ray Visionary
Project with gratings!
NASA/CXC/NGST

3 Mson SgrA®in2012, = { \Why is Sgr A* so faint? Wang
plus multiwavelength et al. (2013)

campaigns and theory
- 2. What causes the ~daily flares?




1o Make a FHare

Energy Source
Radiation Mechanism

Magnetic reconnection
Direct synchrotron (does IR

Shocks extrapolate to X-rays?)

Stochastic accelerationina  Inverse Compton

jet
Synchrotron self-Compton

Asteroid/planetesimal (SSC)
disruption

e.g. Markoff et al. 2001; Yuan et al. 2002, 2003; Liu et al. 2004; Cadez et
al. 2008; Zubovas et al. 2012; Yusef-Zadeh et al. 2012; Hamers &
Portegies Zwart 2014




Radiation I\/\ode\s
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Multiwavelength flare SEDs haven’t ruled out any radiation
models

NuSTAR data slightly favor synchrotron models (Barriere et al.
2014; see also Dodds-Eden et al. 2009)

Comnlementary annraach: etatietical analviecie Af ChanAra flarac
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Flare Distributions
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Difficult to predict from first
principles!

Flares contribute ~30% of
total radiant energy in 3 Ms
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Dominated by brightest
flares

Undetected flares
contribute ~10% of

quiescent flux



Flux Distribution

What about the faint flares that we couldn’t detect?

Want to include all unresolved/undetected flares

Total X-ray flux distribution: use full 3 Ms X-ray light curve
(300s bins, 10,000 data points; Neilsen+ 14b)

A different perspective: move beyond distinct flares, think
about quiescent and variable processes

Similar work in NIR (Dodds-Eden+ ‘11; Witzel+ ’12)

Multi-A stats: insights into radiation mechanism?




X-ray Flux Distribution
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Two Components”?
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Two Components

Counts per pixel

Counts per pixel
o
(&)

BAGANOFF ET AL. 2001

Quiescent

Thermal plasma extending to
Bondi radius

Model: Constant X-ray flux,
Poisson count rate

Variable

Flare emission from inner
accretion flow

Model: probability of flux F is
power law or log-normal




Strategy: Round

Model: Poisson+variable process (quiescence + flares)

Use models to generate simulated data sets, including
counting noise, photon pileup

Compare simulated data to observed data with statistical
tests (Anderson-Darling test, like K-S)

See Neilsen et al. (2014b, submitted) for details




Strategy: Round 2

Model: Poisson+variable process (quiescence + flares)

Use Markov Chain Monte Carlo (MCMC) to map
probability of parameters of X-ray flux distribution

n|9 0, ZP 7l0x )Py (n — jl0y)

P, includes intrinsic qux distribution plus counting noise,

instrumental effects (pileup); can be written analytically in
case of power law!




Success!
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Particularly in the
case of power law,
good quantitative
agreement no matter
how we calculate the
answer!
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Results

Poisson+power law,
Poisson+log-normal
models describe data
well, power law
superior!

Power law:
dN/dF~F-¢,
£=1.92.9,02"%

Over 3 orders of
magnitude in flux!
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What Is a “Flare”?”

Variability consistent with a power law process

Tempting to interpret this as indicating a continuously-
variable source, Ii.e. a “single” emission region with power
on all time scales

Flare is only defined phenomenologically
But flux distribution matches flare luminosity distribution

Suggests that power law in flux is a superposition of
numerous distinct astrophysical events: “flares”




Contribution of

Variapllity

0.3

Variable component
contributes 10-15% of
quiescent count rates
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~20-30% of total flux In
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Synergy

Data — non-flaring 953ks total exposure
(w/ super-resolution processing)

Best fit with y*/dof=1.45 (solid)

PSF extracted from point source
(dashed)
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Flare distributions and power spectra in quiescence (Neilsen
et al. 2013Db), flux distribution (Neilsen et al. 2014b), X-ray

spectra (Wang et al. 2013), and surface brightness profile
(Shcherbakov & Baganoff 2010) all consistent with a ~10%

—contribution to auiescencel



Radiation I\/\eohamsm?

Sample of X-ray fluxes
comparable to what’s available in
the infrared

Parallel analyses: total NIR flux

distribution (see Dodds-Eden et al.

2011; Witzel et al. 2012)

X-ray flux distribution: models
must be able to reproduce SED

and multiwavelength variability
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Summary

Flare statistics, variability, spectra, and surface
brighthess models provide a sensible physical
decomposition of quiescent emission

~90% of emission is steady thermal plasma on large
scales, ~10% Is weak flares from the inner accretion
flow. See also accretion flow simulations by Dibi et
al. (2013), Drappeau et al. (2013)

All intrinsic variability of Sgr A* comes from flares/inner
accretion flow!

Future work: X-ray flux distribution places a strong
constraint on models of the radiation from Sgr A*!




