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Motivation: Compact Objects
Astrophysical phenomena with strong dynamical gravitational fields

Compact object coalescence: 
    Binary black holes, 
        Binary neutron stars,
               Black hole - neutron star binaries

Black hole formation: 
collapse of massive and 
supermassive stars

Sources for powerful gravitational waves!

Reisswig+, Phys. Rev. D, 2009

Moesta+, ApJ Lett. 2014

Reisswig+, Phys. Rev. D, 2013

Reisswig+,Phys. Rev. D, 2011
Ott, Reisswig+, Phys. Rev. Lett., 2011



  

Central Engines for lGRBs

~100 ms

Rapidly rotating
massive evolved star

Protoneutron star + stalled shock

Still not clear 
how lGRB 

central engine 
forms and 
operates!



  

Central Engines for lGRBs

~100 ms

~100 m
s

Simulations of collapsars stop here

Rapidly rotating
massive evolved star

Protoneutron star + stalled shock

Black hole formation + hyperaccretion
(Protomagnetar?)

e.g. Ott, Reisswig+, Phys. Rev. Lett. (2011), 
       Cerda-Duran+, ApJ 2014,
       Sekiguchi+, ApJ 2011



  

Central Engines for lGRBs

Simulations of lGRBs start here

~100 ms

~100 m
s

Simulations of collapsars stop here

Rapidly rotating
massive evolved star

Protoneutron star + stalled shock

Black hole formation + hyperaccretion
(Protomagnetar?) Disk + jet formation

(e.g. Milosavljevic+ 2012, Lindner+ 2010, 
        Bucciantini+ 2009, Proga+ 2003, Zhang+ 2004)



  

Central Engines for lGRBs

Goal:    Self-consistent 3D simulations of stellar collapse → disk / jet formation

Simulations of lGRBs start here

~100 ms

~100 m
s

~ 1 s

Simulations of collapsars stop here
not modeled

Rapidly rotating
massive evolved star

Protoneutron star + stalled shock

Black hole formation + hyperaccretion
(Protomagnetar?) Disk + jet formation



  

Supermassive Star Collapse

Cools and contracts 
           until 
        onset of 
general relativistic       
      collapse

Radiation pressure dominated,
     104 < M < 108 M

sol

Possible pathway for 
supermassive BH formation 

at z>7!



  

Supermassive Star Collapse

Cools and contracts 
           until 
        onset of 
general relativistic       
      collapse

Depending on
rotation, mass, 
metalicity

Thermal bounce

due to explosive

H/He burning

Extremely energetic supernova 
explosion (~1055 erg)

Formation of first supermassive 
black holes at z>7Radiation pressure dominated,

     104 < M < 108 M
sol

(e.g. Chen+ 2014, Montero+ 2012, 
             Linke+ 2001, Fuller+ 1986)

(e.g. Reisswig+ 2013, Saijo+ 2009, 
        Zink+ 2007, Shibata+ 2002)



  

Supermassive Star Collapse

Cools and contracts 
           until 
        onset of 
general relativistic       
      collapse

Depending on
rotation, mass, 
metalicity

Thermal bounce

due to explosive

H/He burning

Formation of first supermassive 
black holes at z>7

EM signals visible to NASA's JWST, WFIRST, 
and ESA's Euclid! GWs detectable by eLISA

Radiation pressure dominated,
     104 < M < 108 M

sol

(e.g. Whalen+ 2013)

Extremely energetic supernova 
explosion (~1055 erg)



  

Supermassive Star Collapse

Cools and contracts 
           until 
        onset of 
general relativistic       
      collapse

Depending on
rotation, mass, 
metalicity

Thermal bounce

due to explosive

H/He burning

Formation of first supermassive 
black holes at z>7

EM signals visible to NASA's JWST, WFIRST, 
and ESA's Euclid! GWs detectable by eLISA

Radiation pressure dominated,
     104 < M < 108 M

sol

Goal:    Self-consistent models of collapse / explosion dynamics;  predict observable signals 

(e.g. Whalen+ 2013)

Extremely energetic supernova 
explosion (~1055 erg)



  

Multiscale Multiphysics Simulations

● Magnetohydrodynamics (dynamics of fluid)

● Non-linear gravity (neutron stars, black holes, gravitational waves) 

● Complex microphysics (Equation of state, nuclear reaction networks)

● Radiation transport (neutrinos, photons)

Core-collapse Supernovae     Black Hole Formation              Binary Neutron Stars

Extremely computationally complex systems!
All four forces of nature at work!

Ott+ 2013, Abdikamalov+ 14 Reisswig+ 2013, Ott+ 2011 Rezzolla+11



  

● Multiple scales (black holes, accretion disks / ejecta, gravitational wave-zone)

● Intrinsically Multi-D (hydrodynamic instabilities, turbulence, rotation)

Multiscale Multiphysics Simulations

Ott+ 2013, Abdikamalov+ 14 Reisswig+ 2013, Ott+ 2011 Rezzolla+11

Extremely computationally complex systems!
All four forces of nature at work!

Core-collapse Supernovae     Black Hole Formation              Binary Neutron Stars



  

Multiscale Multiphysics Simulations
Current state-of-the-art simulations fall short in multiple ways!

Trade-offs in: Gravity,
                      Radiation transport,
                      Microphysical complexity,
                      Dimensionality



  

Multiscale Multiphysics Simulations
Current state-of-the-art simulations fall short in multiple ways!

Trade-offs in: Gravity,
                      Radiation transport,
                      Microphysical complexity,
                      Dimensionality

Correct dynamics not captured!
Limited signal predictions!



  

Multiscale Multiphysics Simulations
Current state-of-the-art simulations fall short in multiple ways!

Trade-offs in: Gravity,
                      Radiation transport,
                      Microphysical complexity,
                      Dimensionality

Extremely challenging for current computer simulations!
         Limited scaling
               (need to run on 100,000+ cores)

         Algorithmic complexity 
                   (need to combine different discretization 
                    schemes)

e.g. LRZ SuperMUC: O(100,000) cores

Just use larger computers??

Correct dynamics not captured!
Limited signal predictions!



  

Multiscale Multiphysics Simulations

● Multiblock adaptive-mesh refinement (e.g. forests of oct-trees)

● Particle-in-cell methods  (→ Monte-Carlo radiation transport)

● Extra grids (e.g. GW extraction, apparent horizon finding)

● Smoothed-particle hydrodynamics (for very low density material)

● Moving voronoi meshes?

May require different coupled discretization schemes



  

Multiscale Multiphysics Simulations
Future (and current) machines achieve 
               higher computational power via many cores!
                                       Also: GPUs, Intel Xeon Phi

       We need to distribute the computational load across 
                               many processing units!



  

Multiscale Multiphysics Simulations
       We need to distribute the computational load across 
                               many processing units!

Internode communication:   Network, e.g. via Message Passing Interface (MPI)

Distributed memory!



  

Multiscale Multiphysics Simulations
       We need to distribute the computational load across 
                               many processing units!

Intranode parallelization:   Threads

Shared memory!



  

Multiscale Multiphysics Simulations
       We need to distribute the computational load across 
                               many processing units!

Ideal world:   Problem size is big / want more performance 
                               
                        → just use bigger computer (more cores)

You want twice as much speed, simply use twice as many cores!

Scaling



  

Multiscale Multiphysics Simulations
Must use highly parallel algorithms!
        (1,000 → 100,000+? cores)

Problems

Simulation load is data dependent and can 
change unpredictably during simulation
   (AMR, particles)

Particles can cluster

Some grids may be located only on 
certain processors (GW extraction, AH finding)

→ We require some sophisticated 
         load-balancing scheme!

→ Starvation

Data exchange between processes:

→ Communication overhead / latencies



  

Multiscale Multiphysics Simulations
Must use highly parallel algorithms!
        (1,000 → 100,000+? cores)

Problems

Simulation load is data dependent and can 
change unpredictably during simulation
   (AMR, particles)

Particles can cluster

Some grids may be located only on 
certain processors (GW extraction, AH finding)

→ We require some sophisticated 
         load-balancing scheme!

→ Starvation

→ Communication overhead / latencies

Data exchange between processes: RIP scaling



  

Orchestration of Simulation

Classical “static” execution model:
● Routines are executed in a predefined order

● Interprocess communication happens synchronously

starvation latency

starvation latency



  

Orchestration of Simulation

Classical “static” execution model:
● Routines are executed in a predefined order

● Interprocess communication happens asynchronously

starvation latency

starvation



  

Orchestration of Simulation

Ideal execution model:
● Routines are executed out of order

● Interprocess communication happens asynchronously

Can be achieved by task-based parallelism!



  

Orchestration of Simulation

Ideal execution model:
● Routines are executed out of order

● Interprocess communication happens asynchronously

NOTE: Starvation and Latencies can still occur!

Need enough “tasks” to execute: task granularity

Higher task granularity will cause additional “bookkeeping” overhead!

Task granularity vs bookkeeping overhead



  

Task-based parallelism
● Each computational routine represents a “task”

● Each task depends on input, and defines its output

● Task can only be executed once input is “ready”

Functional programming style! (E.g. Haskell, C++ template meta-programming)



  

Task-based parallelism
● Each computational routine represents a “task”

● Each task depends on input, and defines its output

● Task can only be executed once input is “ready”

NOTE: Tasks do NOT just represent mapping grid functions onto others!
            They are more fine grained!



  

Implementation 
               (Examples)

Uintah: Fire and explosion simulations
             AMR + particle-in-cell

With task-based parallelism: 
        Strong scaling up to 250,000 cores!

Homegrown via MPI

High Performance ParalleX (HPX):  Hartmut Kaiser et. al. (LSU)

    unified programming model for parallel and distributed applications
    
    Not a simulation code.
    
    “Replaces MPI”: don't worry about lower level parallelization paradigms 
                               like threads or message passing

Center for the Simulation of 
Accidental Fires and Explosions (C-SAFE)

Hadoop / MapReduce:   Google, parallel database queries



  

SIMsalabim 
A new framework using task-based parallelism

Forests of oct-tree grids
Particle-in-cell methods

General-relativistic magnetohydrodynamics

Finite volumes / finite differences

Monte-Carlo radiation transport

Smoothed-particle hydrodynamics



  

Forests of oct-trees: Logic in SIMsalabim

For each octant, we have a separate task wrapping some function F  

Advantage: We have plenty of tasks that can execute in parallel!

Disadvantage: Manually define objects and tasks for each octant separately??? INSANE!!

Solution: Design a high-level driver that provides a high-level user interface!

...

High level

Autom. defined by “octreeForest driver”



  

SIMsalabim: Load-balancing and Work-stealing

Work-stealing within one MPI process: 
      Handled automatically by Intel Threading Building Blocks

General strategy:  - Load-balancing every few steps ([hierarchical] global operation)
                             - Work-stealing for unpredictable imbalances (can be expensive)

Inter-process work-stealing strategy:

1) Among all available processes, pick the one with the highest load (#ready tasks) 
    and ask for a task.
2) Victim process sends task (+ all associated input data) with 
    highest work/data ratio (or denies/doesn't answer → retry with another process).
3) Idling process executes task and sends back result to origin. 

When local scheduler idles:



  

Oct-trees and task-based parallelism

Nominal octant

Octant with GZs attached (temporary object)

Proc 3

Proc 2

Proc 0

Proc 1 Example: WaveToy2D



  

Current state

WaveToy2D tested on a few number of nodes (multi-process, multi-threading)

Simple work-stealing test over multiple nodes. Good scaling within tested range.

Next step: Put hydro + spacetime finite-volume / finite difference solver into SIMsalabim



  

Summary

● Simulation of compact objects are demanding:
we require tremendous computational power

● Future computers are massively parallel

● Need to overcome starvation and 
communication latency

● Asynchronous out-of-order scheduling:
Task-based parallelism 
               →  shown to scale to >200,000 cores
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