Resolving the High Energy Universe with Strong Gravitational Lensing

Anna Barnacka

Harvard

X-Ray Jets - Lessons from Chandra

Increased x-ray emission by a factor of 50 from the HST-1 knot (Harris et al. 2006,2009) Core and HST-1: Separation ~ 60 pc

Flares from knots along the jets

Ambiguity of Gamma-Ray Origin

Scientific Issues

- Frequency of M87-like variability
- Structure of gamma-ray jets
- Spatial origin of gamma-ray flares

M87 Gravitationally Lensed?

Deflection angle:

$$\alpha = \frac{4GM(r)}{c^2} \frac{1}{r}$$

Images separation - a few arcseconds time delay magnification ratio

Application of strong lensing

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (June 2014, ApJ)

M87 as a Toy Model

• zs=1, zl = 0.6

Einstein radius ~ 2.2 kpc (0.45")
60 pc ~ 0.01" ~ 3% Einstein radius
Differences between the core and the HST-1:
difference in time delay: ~ 2 days
difference in magnification ratio: ~ 0.2

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (June 2014, ApJ)

Temporal Resolution at Gamma Rays

Lensed Gamma-Ray Jets: PKS 1830-211

Source z = 2.5, Lens z = 0.9

Radio Time Delay 26±5 days

Magnification Ratio 1.5±0.2

•

Lensed Gamma-Ray Jets: PKS 1830-211

The first evidence of lensing at gamma-rays (Barnacka et al. 2011)

Gamma-Ray Time delay 27.1±0.45 days

Gamma-ray Flares Time Delays ?

Gamma-ray Flares: Time Delays

- The Autocorrelation Function
- The Double Power Spectrum
- The Maximum Peak Method

Gamma-ray Flares: Time Delays

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (2015)

Properties of the Lensed System

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (2015)

Spatial Origin of Gamma-ray Flares

Barnacka, A., Geller, M., Dell'Antonio, I., & Benbow, W. (2015)

Summary

Strong Lensing:

Powerful Tool to Resolve High Energy Universe

 Effective Spatial Resolution ~ 0.02" improvement x 10,000

Backup Slides

Gamma-ray Flare 1 and 2: Time Delays

Monte Carlo Simulations

Spatial Origin of Gamma-Ray Flares

Lensing Maps

Lensing Parameters Along the Jet

Position of t

