MHD-driven Core-Collapse Supernovae in Three Dimensions

Philipp Mösta

UC Berkeley pmoesta@berkeley.edu

Christian Ott, Sherwood Richers, Luke Roberts, David Radice, Roland Haas, Anthony L. Piro, Ernazar Abdikamalov, Christian Reisswig, Jonas Lippuner and Erik Schnetter

Einstein Fellowship symposium @ CFA Oct 28, 2015



### Core-Collapse Supernovae:

#### **Explosions of Massive Stars**





© Anglo-Australian Observatory

#### Core-Collapse Supernovae:

#### **Explosions of Massive Stars**





© Anglo-Australian Observatory



Supernova 1987A Large Magellanic Cloud Progenitor: BSG Sanduleak -69 220a, 18 M<sub>SUN</sub>

## **Core Collapse Basics**



Nuclear equation of state (EOS) stiffens at nuclear density.

Inner core (~0.5 M<sub>Sun</sub>)

-> protoneutron star core. Shock wave formed.

Reviews: Bethe'90 Janka+'12



Outer core accretes onto shock & protoneutron star with  $O(1) M_{\odot}/s$ .

-> Shock stalls at ~100 km, must be "revived" to drive explosion

## Hyperenergetic Supernovae

# Small fraction (0.1-1%) of CCSN:

- Hyperenergetic (10 100 B)
- doppler-broadened lines (Type Ic-bl)
- Relativistic outflows
- Some connected to long gamma-ray bursts



Supernova 1998bw Image Credit: ESO

## Hypernovae & GRBs



## Hypernovae & GRBs



- 11 long GRB core-collapse supernova associations.
- All GRB-SNe are of type "Ic-bl": no H, He in spectra, relativistic velocities (bl: "broad lines"), hypernova energies (~10<sup>52</sup> erg).
- But not all type Ic-bl supernovae come with GRBs
- Trace low metallicity and low redshift
- Neutrino mechanism is inefficient ( $\eta$ ~10%); can't deliver a hypernova.

## Hypernovae & GRBs



- What mechanism/engine drives these extreme explosions?
- What determines additional XRF/GRB launch?

Magnetorotational Mechanism

[LeBlanc & Wilson '70, Bisnovatyi-Kogan '70, Obergaulinger+'06, Burrows+ '07, Takiwaki & Kotake '11, Winteler+ 12]

Rapid Rotation + B-field amplification (need magnetorotational instability [MRI]; difficult to resolve, but see, e.g, Obergaulinger+'09)

2D: Energetic bipolar explosions. Energy in rotation up to 10B.

Results in ms-period proto-magnetar. GRB connection?

Caveats: Need high core spin; only in very few progenitor stars? Magnetic field amplifaction?



Burrows+'07

#### **Detailed Models: Ingredients**



- Additional Complication: Core-Collapse Supernovae are 3D
  - Rotation, fluid instabilities (convection, turbulence, advective-acoustic, rotational), MHD, multi-D structure from convective burning -> Need 3D treatment.
- Route of Attack: Computational Modeling
  - turbulence on scales 10 m but relevant radius of star is at least 10<sup>7</sup> m; simulation timestep is 10<sup>-6</sup> s but cooling time of protoneutron star is 10 s

#### 3D Dynamics of Magnetorotational Explosions

New, full 3D GR simulations. Mösta+ 2014, ApJ 759, L24 Initial configuration as in Takiwaki+11, 10<sup>12</sup> G seed field.



## What's going on here?



- m=1 spiral instability
- Growth rate, wavelength and helicity of fastest growing mode consistent with MHD kink instability; should hold independent of initial B-field strength

$$au_{
m fgm} pprox rac{4a\sqrt{\pi
ho}}{B_{
m tor}} pprox 1\,{
m ms}$$
  $\lambda_{
m fgm} pprox rac{4\pi a B_z}{B} pprox 5\,{
m km}$ 



## **MHD Kink Instability**

- B-field near proto-NS: B<sub>tor</sub> >> B<sub>z</sub>
- Unstable to MHD screw-pinch kink instability.
- Similar to situation in Tokamak fusion reactors!





Credit: Moser & Bellan, Caltech



Braithwaite+ '06



## MHD Kink Instability

3D: Plasma flow unstable to MHD "kink" instability

Key for instability:  $B_{tor}/B_z > 2\pi a/L$ 

[Shafranov+'56, Kruskal+'58]

$$\nabla(p + \frac{B^2}{8\pi}) = \frac{1}{4\pi}(B \cdot \nabla)B$$

- Magnetic pressure driven
- cannot be countered by magnetic tension

#### Entropy

Mösta et al. 2014

#### 3D Volume Visualization of

$$t = -4.95 \, \text{ms}$$

$$\beta = \frac{P_{\text{gas}}}{P_{\text{mag}}}$$

Mösta et al. 2014

#### **Ongoing Simulation**



- Tracking shock with lower resolution as scales become larger and larger
- Follow evolution with tracer particles to extract nucleosynthetic yields

### **Explosion?**



## **Ongoing Simulation**

- Geometry becomes even more tilted, but general widelobe trend continues
- Expansion speed few percent of the speed of light; very different from 2D jet explosion

#### Implications for Gamma-Ray Bursts

- Long gamma-ray bursts come with extreme supernovae.
- Central engine of GRB: black hole or neutron star?
- Simulations show: continued accretion on the equator in supernova phase.
- Favors formation of black-hole engine (collapsar).



Supernova remnant W49B; harboring a black hole? (Lopez+2013)

## Summary

- MHD supernovae (and other high-energy astro systems) need to be modeled in 3D
- Developing jets become 'kink'-unstable, but highly magnetized outflows drive shock into dual-lobe structure that transitions into explosion
- Accretion continues and mass of the proto-NS increases -> Allows for magnetar and collapsar LGRB models
- Implications for r-process in jet-driven outflows





## Thank you!