The Role of GR and Tidal Effects in Dense Stellar Systems

Johan Samsing Princeton University

Morgan MacLeod, Enrico Ramirez-Ruiz (UC Santa Cruz)

Moved to Princeton last xmas from Denmark

- Einstein, Spitzer fellow.
- Member of the Princeton Society of Fellows.
- Wife and daughter (2 months!!)

Princeton, Peyton Hall

New Home

Main Project:

Study the role of GR and Tides in few body interactions.

Tools:

I wrote a parallel N-body code with equations of motion including dynamical GR and nonlinear Tides.

First goals:

- Identify tidal outcomes (i.e. whats going on ?)
- Calculate cross sections for tidal outcomes.
- Observable consequences.

Bin, mergers (SN)

GW inspirals Super novae(SN) Blue Stragglers LMXB HV stars Black Holes

NS-NS (GW), GC 'heat source'

Compact bin, mergers (SN, GW)

Kozai-Triples

Include: **GR** Include: **Tides**

Single-Single

Binary-Single

Chaotic and requires fully dynamical models in both tides and GR.

uo sc-r, j, r

si = Eigen_vals(sc)

Nall c_wrappe_gsl_f_ellint_rj(CSEI_i, s1, s2, s3, si, err_ellint_rj)

Aint_MAT_J(sc,sc) = Aint_Di

- enddo
- !form final Aint:

A Equations of motion (CR_MAT, AINT_MAT_D),

- Write out total energy of the
 - system (internal, external) assuming the stars a self-similar
 - ellipses and then apply Euler-Lagrange equations.

SUBROUTINE Calc_Matrix_Inverse

- Fast parallel Fortran version.
- Hundreds of chaotic orbits in 5-10 sec.
- Single and statistical studies.
- Can never be done with full hydro!!

GR model

- PN expansion (v/c)
- 1PN ,2PN ,2.5PN(GWs) order
- Added as modified acc

Affine Model:

$$r_i = q_{ia}\hat{r}_a$$

$$\dot{r}_i = \dot{q}_{ia}\hat{r}_a$$

•

- Self-similar ellipses
- Allow non-linear variations
- Polytropic stars
- Fully dynamical
- Easy to add viscosity and GR.
- effectively I=2 (see PT).

2-body studies by:

- Carter, Luminet (1985)
- Lai, Rasio, Shapiro (1-4)
- Kochanek (91)

4

2

0

-2

1.5

1.0

0.5

0.0

Chaotic interactions can be decomposed into a binary with a bound single

The key is therefore to understand the evolution of isolated binaries

Binary-Single interactions with Tides

Formation of Tidal Inspirals

- Never appear without tides

Formation of Tidal Inspirals

- Never appear without tides

Similar to GW inspirals

Cross section increases with SMA! Same for Tidal inspirals?

A hint from analytical estimates

- Calculate inspiral time (t_insp) vs isolation time (t_iso).
- Identify in phase space where t_insp<t_iso.

<u>Hard Binary limit:</u>

Thank you