Turbulent Engines of Extreme Corecollapse Supernovae

Philipp Mösta

Einstein fellow @ UC Berkeley pmoesta@berkeley.edu

Einstein fellows symposium, Oct 18, 2016

Core-collapse supernovae neutrinos turbulence

(Binary) black holes accretion disks EM counterparts

Magnetic fields in high-energy astro

Binary neutron stars

gravitational waves EM counterparts sGRBs

Extreme core-collapse

hyperenergetic superluminous lGRBs

Core-collapse supernovae neutrinos turbulence

(Binary) black holes accretion disks EM counterparts

Magnetic fields in high-energy astro

Binary neutron stars

gravitational waves EM counterparts sGRBs

Extreme core-collapse

hyperenergetic superluminous lGRBs

New era of transient science

- Current (PTF, DeCAM, ASAS-SN) and upcoming wide-field time domain astronomy (ZTF, LSST, ...) -> wealth of data
- adv LIGO / gravitational waves detected
- Computational tools at dawn of new exascale era

Image: PTF/ZTF/COO

Image: LSST

New era of transient science

- Current (PTF, DeCAM, ASAS-SN) and upcoming wide-field time domain astronomy (ZTF, LSST, ...) -> wealth of data
- adv LIGO / gravitational waves detected
- Computational tools at dawn of new exascale era

Transformative years ahead for our understanding of these events

Image: LSST

Hypernovae & GRBs

- 11 long GRB core-collapse supernova associations.
- All GRB-SNe are stripped envelope, show outflows v~0.1c
- But not all stripped-envelope supernovae come with GRBs
- Trace low metallicity and low redshift

Neutrino mechanism is inefficient; can't deliver a hypernova

Superluminous supernovae

Some events: stripped envelope no interaction $E_{lum} \sim 10^{45} \text{ erg}$ E_{rad} up to 10^{52} erg

Gal-Yam+12

Superluminous / hyperenergetic supernovae

Core collapse basics

Nuclear equation of state stiffens at nuclear density

Inner core (~0.5 M_{\odot}) -> protoneutron star + shockwave

Core collapse basics

Nuclear equation of state stiffens at nuclear density

Inner core (~0.5 M_{\odot}) -> protoneutron star + shockwave

Outer core accretes onto shock & protoneutron star with O(1) M_{\odot} /s

Shock stalls at ~ 100 km

Core collapse basics

Nuclear equation of state stiffens at nuclear density

Inner core (~0.5 M_{\odot}) -> protoneutron star + shockwave

Core-collapse supernova problem: How to revive the shockwave?

Magnetorotational mechanism

Burrows+'07

[LeBlanc & Wilson '70, Bisnovatyi-Kogan '70, Obergaulinger+'06, Burrows+ '07, Takiwaki & Kotake '11, Winteler+ 12]

Rapid Rotation + B-field amplification (need magnetorotational instability [MRI]; difficult to resolve, but see, e.g, Obergaulinger+'09, PM+15)

2D: Energetic bipolar explosions Energy in rotation up to 10⁵² erg

Results in ms-period proto-magnetar

Magneto-Hydrodynamics

Gas/plasma dynamics

Magneto-Hydrodynamics

General Relativity

Gravity

All four forces!

All four forces!

Additional Complication: Core-Collapse Supernovae are 3D

- rotation
- fluid and MHD instabilities, multi-D structure, spatial scales

Need 21st century tools:

- cutting edge numerical algorithms
- sophisticated open-source software infrastructure
- peta/exa scale computers

http://einsteintoolkit.org

3D Volume Visualization of

t = -3.00 ms

Magnetorotational Mechanism

Big uncertainty so far: How do we get the magnetic field amplification?

Burrows+'07

MRI Basics

- Weak field instability
- Requires negative angular velocity gradient
- Can build up magnetic field exponentially fast
- Extensively researched in accretion disks: ability to modulate angular momentum transport and grow large scale field

What's the situation in core-collapse?

Stability criterion:

$$-8\Omega^2 < \omega_{\rm BV}^2 + r\frac{d\Omega^2}{dr} < 0$$

[Balbus&Hawley 91,98, Akiyama+03, Obergaulinger+09]

Magnetorotational Mechanism

- MRI works locally Akiyama+03, Shibata+06
- shearing box simulations

Obergaulinger+09

But what about global field?

Burrows+'07

First global 3D MHD turbulence simulations

- 10 billion grid points (Millenium simulation used 10 billion particles)
- 130 thousand cores on Blue Waters
- 2 weeks wall time
- 60 million compute hours
- 10000 more expensive than any previous simulations

Does the MRI efficiently build up dynamically relevant global field?

3D magnetic field structure

dx=500m

dx=200m

dx=100m dx=50m

t = 0.00 ms

t = 0.00 ms

t = 0.00 ms

t = 0.00 ms

PM+ 15 Nature

PM+ 15 Nature

Growth at Large Scales

saturation within 60ms

PM+ 15 Nature

PM+ 15 Nature

Global Field Structure

t=0ms PM+ 15 Nature

t=10ms

t=10ms 30

PM+ 15 Nature

Global Field Structure

t=0ms PM+ 15 Nature

t=10ms

t=10ms ₃₁

Summary

New (hyperenergetic/superluminous) transients challenge our engine models

Need detailed massively parallel 3D GRMHD simulations to interpret observational data

Magnetoturbulence and large-scale dynamo action create conditions for magnetar engine

High-performance computing key to solving these puzzles

Thank you!