PLASMOIDS IN RELATIVISTIC RECONNECTION: THE BLOBS OF BLAZAR EMISSION?

Maria Petropoulou Purdue University

Physics Astrenomy

in collaboration with

Dimitrios Giannios (Purdue) Lorenzo Sironi(Columbia)

October 19, 2016 Einstein Symposium 2016, CfA, Harvard

Outline

- Introduction to blazars
- Motivation
- Model setup
- Plasmoid-powered flares: timescales & spectra
- Future directions

Blazars

- Radio-loud AGN
 (< 5/% of all AGN)
- Superluminal motion +180°
- GeV/TeV emitters
- 🗲 Double-hump" SED
- Short variability (min-hr) at high

Motivation

Emitting region Aka: The blob

What is the physical origin of the "blob"?

Relativistic particles

Photon emission

Fossati <u>et al. (1998)</u>

Can we build an *ab initio* model for the blob and its emission? Jet dissipation

Jet dissipation (~ 0.1-1 pc)

Jet acceleration (~0.001- 0.1 pc) (e.g. Vlahakis & Koenigl, 2004; Komissarov et al. 2007)

Jet launching

At dissipation $\sigma \sim 1-10$

Initially $\sigma >> 1$

Magnetization σ

$$\sigma = \frac{B_0^2}{4 \pi \rho c^2}$$

Jet dissipation

• The jet may contain field reversals with a scale ~100 Rg ~ 100

Magnetic field
 lines may reconnect
 if: t_{exp} ~ t_{rec}

 $r_{diss} / \Gamma_{i}c \sim 100\Gamma_{i}R_{g} / \varepsilon c$ $r_{diss} \sim \Gamma_{j}^{2} 100 R_{g} / \varepsilon \sim 1 M_{8} \Gamma_{j,10}^{2} \varepsilon_{-1}^{-1} \text{ pc}$

 $V_{rec} \sim \epsilon c \sim 0.1 c$

Parfrey, Giannios, Beloborodov, 2015, MNRAS

D

Rg

Magnetized jets may be prone to the kink instability

kink instability

(e.g. Eichler 1993; Begelman 1998; Giannios Spruit 2006; Porth & Komissarov 2015)

quilibrium

Magnetic reconnection

It converts magnetic energy into bulk motion, heat, energetic particles

1. Cold, magnetized plasma enters the reconnection region

2. Plasma leaves the reconnection region at the Alfvén speed $\Gamma out \sim (1 + \sigma)^{1/2} > 1$

3. Reconnected material contains energetic (non-thermal) particles

Plasmoid-dominated reconnection

1. Current sheet fragments to plasmoids (Loureiro et al. 2007; Uzdensky et al. 2010; Loureiro et al. 2012 +)

2. Plasmoids "grow" (merge) and leave the layer at Alfvén speed ~c

3. The largest plasmoids can power bright/ultrafast blazar flares (*e.g. Giannios et* al. 2009; 2010; Giannios 2013)

Petschek Reconnection (Lyubarsky 2005)

Plasmoid-dominated reconnection

(Zenitani & Hoshino 2001, Loureiro+2007, Bhattarjee+2009, Uzdensky+2010, Loureiro+2012, Guo+2014;2015, Sironi & Spitkovsky 2014, Werner+2016)

Why?

Efficiency

It transfers ~ 50% of the flow energy (electron-positron plasmas) or ~ 25% (electron-proton) to the emitting particles

 $f_{\rm rec} \equiv \frac{\sum_i \int_{V_i} U_{\rm e} dV_i}{\sum_i \int_{V_i} (e + \rho c^2 + U_{\rm B}) dV_i}$

Sironi, Petropoulou & Giannios 2015

Efficiency

It transfers ~ 50% of the flow energy (electron-positron plasmas) or ~ 25% (electron-proton) to the emitting particles

 $\frac{\sum_{i} \int_{V_{i}} U_{e} dV_{i}}{\sum_{i} \int_{V_{i}} (e + \rho c^{2} + U_{B}) dV_{i}}$ $f_{\rm rec}$ Ξ

Ghisellini et al. 2014

Equipartition

It leads to rough equipartition between the particles and magnetic fields in the plasmoids

$$\frac{U_{\rm e}}{U_{\rm e} + U_{\rm B}} \bigg\rangle \equiv \frac{\sum_{i} \int_{V_{i}} U_{\rm e} \frac{U_{\rm e}}{U_{\rm e} + U_{\rm B}} \mathrm{d}V_{i}}{\sum_{i} \int_{V_{i}} U_{\rm e} \mathrm{d}V_{i}}$$

Sironi, Petropoulou & Giannios 2015

Equipartition

It leads to rough equipartition between the particles and magnetic fields in the plasmoids

(Celotti & Ghisellini 2008)

A model for blazar flares

(Petropoulou, Giannios, Sironi 2016)

Phase I:

 Plasmoids are quasi-spherical structures

• Plasmoids grow through mergers and accumulate particles. Growth speed \sim 0.06c-0.12c for $\sigma\text{=}3\text{-}50$

- Plasmoids accelerate while smaller. Acceleration rate is ${\sim}0.12{-}0.15$ independent of σ

• Comoving particle density & B-field ~ constant

Particle distribution ~
 isotropic in larger plasmoids

A model for blazar flares

Phase II:

• Gradual cessation of accelerated particles

• Plasmoids expand due to e.g. an under-pressure outside the layer

• Comoving B-field decays

Phase II is poorly constrained from PIC simulations

Phase I is well constrained from PIC simulations.

Plasmoid momentum: an example

(Sironi, Giannios, Petropoulou 2016)

-Exit (final)

Blue:small & relativistic

Cyan: large & non-relativistic

Peak luminosity Small & Fast Luminosity depends on:

 Total number of radiating particles in the plasmoid

- Size w of the plasmoid
- Doppler factor of the plasmoid $${\rm Large}\$ & Slow \rightarrow

Peak luminosity at end of Phase I:

• Final size w_{f} of the plasmoid

 Final momentum (acceleration has been completed)

$$L^{\rm pk}(\nu) \propto \left[\delta_{\rm p}(w_{\rm f}'')\right]^{3+\alpha} w_{\rm f}''^2$$

Flux-doubling timescale

$$\Delta \tau_{1/2} (1+z)^{-1} = \int_{w_{1/2}^{\prime\prime}}^{w_{\rm f}^{\prime\prime}} \frac{\mathrm{d}\tilde{w}}{\delta_{\rm p}(X/\tilde{w})}$$

Fixed viewing angle

Large & Slow

Peak luminosity vs. risetime

For a given plasmoid there is a clear anticorrelation between Lpk and $\Delta t_{1/2}$:

The brighest flares have the shortest $\Delta t_{1/2}$

SED & light curves Small & Fast

Future directions

 Pair multiplicity in electron-proton plasma & SED morphology

 Compton scattering on external radiation fields & Compton dominance of flares

 Plasmoid chain & statistics of flares (e.g. recurrence of fast & bright flares)

• Connection to the large-scale properties: Where? Why?

• Radio "afterglow": Radio flares following a gamma-ray flare?

Thank you

Back-up slides

Credit: L. Sironi

1.3

Particle anisotropy

Particle momentum (y-direction) spectrum

Plasmoid acceleration

-

Ratio of w// to w

Particle number density

Magnetic energy fraction 🔶

Kinetic energy fraction

Sironi, Giannios & Petropoulou, 2016

