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globular clusters (GCs) due to dynamical friction (Tremaine
et al. 1975; Gnedin et al. 2014) is consistent with the dynam-
ical processes that we will be treating in this paper, and is
generally capable of growing NSCs to ⇠ 106M� in less than
one billion years1. An alternative formation channel is in situ

growth through star formation (Milosavljević 2004; Antonini
et al. 2015). It is not clear which of these two mechanisms
dominates NSC formation, and the data is often consistent
with contributions from both channels (Leigh et al. 2012;
Antonini et al. 2012). However, it is clear that in situ star
formation continues at some level in most nuclear star clus-
ters2, and therefore provides a natural source of SBHs in
NSCs.

The primary physical mechanism that we will consider,
tidal capture, is well known. One star can capture another
into a bound orbit if a close encounter between the two puts
more energy into tidal perturbations than the positive rela-
tive energy of these two stars at large separation. The tidal
capture mechanism was first pointed out by Fabian et al.
(1975), with an early computation by Press & Teukolsky
(1977) and a more refined modal analysis given by Lee & Os-
triker (1986). Later work analyzed subsequent orbital evo-
lution both prior (Mardling 1995a,b) and subsequent (Lai
1996, 1997) to the onset of internal dissipation.

If SBHs are retained, or are subsequently formed, in
dense stellar systems such as GCs or NSCs, then mass seg-
regation will bring them to the central, densest part of the
system, whereupon they will be well situated to tidally cap-
ture the much more abundant low mass, normal stars. The
dramatic influence that the resulting tidal capture binaries
can have on the dynamical evolution of such clusters has
been studied extensively (Lee 1987; Statler et al. 1987; Lee
& Ostriker 1993; Kim et al. 1998). But the specific possibil-
ity that a runaway of successive tidal captures would lead
to the formation of a massive black hole, first proposed by
Miller & Davies (2012), has not been quantified in detail.
We will provide some first calculations of the circumstances
required for such a runaway to occur in this paper, as well as
the expected endpoint of the runaway, returning to a more
detailed calculation in subsequent work. The preliminary an-
alytic and numerical treatment presented here indicates that
the physical requirements for runaway tidal captures are first
satisfied for galactic nuclei near the NSC/SMBH transition
at black hole masses of ⇠ 105�6M� and stellar velocity dis-
persions ⇠ 35 km s�1.

Supermassive black hole (SMBH) seed formation is gen-
erally studied in the context of the high redshift universe,
and three leading candidate scenarios currently exist (see
Volonteri 2010; Sesana 2012, for general reviews): stellar
remnant BHs left over following the deaths of Pop III stars,
the direct collapse of gas in small halos, and runaway stellar
collisions in dense star clusters. The Pop III scenario has
the advantages of concreteness and ubiquity, but has been
cast into doubt by recent simulations that find Pop III stars

1 Though we note that the relationship between NSCs and GCs
may be more complex, and some GCs may even descend from

tidally stripped NSCs (Böker 2008).
2 For example, the Milky Way NSC exhibits a large spread in stel-
lar metallicity (Do et al. 2015), and contains two disks of young

stars formed ⇠ 6 Myr ago (Genzel et al. 2010, and references

therein).
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Figure 1. Nuclear star cluster (yellow stars) and supermassive
black hole (black and green dots) masses in local universe galax-

ies, plotted against host galaxy velocity dispersion. A “break

point” at �e↵ ⇡ 100 km s�1 is visible, below which NSCs dom-
inate and above which SMBHs dominate. In low �e↵ galaxies,

NSC masses appear to follow a power law that turns over for

�e↵ & 100 km s�1; this power law is resumed in larger galaxies by
the SMBH masses, which fall o↵ sharply for �e↵ . 100 km s�1.

SMBH dynamical mass measurements and NSC mass data are
taken from Graham & Spitler (2009); Erwin & Gadotti (2012);

Neumayer & Walcher (2012); Kormendy & Ho (2013); Georgiev

& Böker (2014), and two local galaxies of interest (the Milky
Way and M31) are marked with circles; these datasets give one

SMBH mass (black dots) for every NSC mass. We also show a dif-

ferent set of SMBH masses estimated with maser disk measure-
ments (Greene et al. 2016); for these galaxies associated NSCs

are unconstrained and the SMBH masses are shown with green

dots. The green line shows the “saturation mass” predicted for
SMBHs formed through the mechanism in this paper, described

in more detail in Eq. 39. Growth of SMBHs above the green line

occurs through standard forms of gas accretion (Soltan 1982).
The black arrow at � = 35 km s�1 indicates the rough transition

below which NSCs are insu�ciently dense to produce runaway
SBH growth.

may be much less massive than was previously thought due
to fragmentation during their formation (Clark et al. 2011;
Greif et al. 2011). Even if simpler estimations for the masses
of the first stars (⇠ 102�3M�) are correct (Abel et al. 2002),
this scenario produces the lowest mass SMBH seeds. Direct
collapse of gas in early halos has the advantage of producing
much larger seeds, ⇠ 105�6M�, but will be strongly sup-
pressed by small amounts of coolants, primarily molecular
hydrogen (Visbal et al. 2014).

The mechanism in this paper is a specific example of
the third channel for SMBH seed formation: runaway col-
lisions of stellar mass objects in dense stellar environments
(Sanders 1970; Begelman & Rees 1978; Ebisuzaki et al. 2001;
Gürkan et al. 2004), such as GCs or NSCs. Past studies of
this channel predicted SMBH seeds of widely varying mass,
depending on which variant of the stellar runaway proceeds:
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Runaway Collisional Growth
• Third channel for SMBH seed 

formation at high z 

✦ Intermediate in mass 
between pop III and direct 
collapse

(Sesana 11)

Massive black hole cosmic history 7

Figure 2. Mass function of seed BHs for the three different formation scenarios
discussed in the text: direct collapse (left panel), runaway mergers in high redshift
star clusters (central panel), and PopIII remnant (right panel). From [69].

• prolonged accretion of large supplies of gas via accretion disks.

Soltan [86] first noticed that the optical luminosity function of quasars directly implies
a large population of nuclear MBHs lurking in quiescent galaxies today. Infact, to an
observed luminosity L corresponds a mass accretion rate Ṁ = fbol(1−ϵ)L/(ϵc2), where
fbol is a bolometric correction to the luminosity and ϵ is a mass-to-energy conversion
efficiency. Subsequent mass measurements of the local nuclear MBHs suggested that
the MBH mass density in the local Universe is consistent with the accreted mass
inferred by integrating the quasar luminosity function at all redshifts assuming ϵ ≈ 0.1
[87, 88, 89, 90, 20] . Therefore, the ’quasar mode’, in which large amount of gas are
accreted in single coherent episodes via accretion disks shining close to the Eddington
luminosity ‡, appears to be principal path of MBH cosmic growth. We notice, however,
that there are caveats to this argument. If z ≈ 2 quasars have ϵ ≈ 0.2 (which may be
the case if they have, on average, a substantial spin), then the integrated MBH mass
density implied by the quasar luminosity function would be much lower, leaving room

‡ We recall that the Eddington luminosity is the maximum admitted luminosity for which the
radiation pressure exerted the photons emitted in the accretion process is smaller than the
gravitational binding energy of the accreting material. If the contrary is true, radiation pressure
blows away the reservoir of gas, suppressing the accretion process. For standard radiatively
efficient accretion flows [91], the Eddington luminosity corresponds to an accretion rate of ṀEdd ≈
2.5M8 M⊙yr−1, where M8 is the MBH mass normalized to 108 M⊙.

DC Pop III

Collisional Runaway



Runaway Collisional Growth
• Third channel for SMBH seed 

formation at high z 

✦ Intermediate in mass 
between pop III and direct 
collapse 

• Several variants 

✦ Supermassive star 

✦ Compact remnant subcluster 

✦ We propose slow low-z 
runaway through tidal 
encounters in NSCs

(Gurkan+04)
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Fig. 1.— Various possible scenarios for the early dynamical evolution of a dense star cluster with a realistic IMF. The path for the
formation of an IMBH through core collapse and runaway collisions (studied in this paper) is indicated by a thicker line. An alternative
scenario involves successive mergers of stellar-mass BH binaries driven by a combination of dynamical interactions and gravitational
radiation (left side of the diagram). For a runaway to occur, the core collapse time tcc must be smaller than the stellar lifetime t∗ of the
most massive stars in the cluster. High-velocity disruptive collisions, the formation of a very extended and diffuse merger remnant, or the
accumulation in the cluster of gas released by stellar winds and supernova explosions could lead to the formation of a complex system
containing stars embedded in a dense gas clouds. The final fate of such a system is highly uncertain.

time (see eq. (6) below). In sharp contrast, core col-
lapse in a single-component Plummer model occurs after
! 10 trh(0) (a well-known result). Thus the presence of a
broad IMF can dramatically accelerate the evolution of
the cluster to core collapse.

This acceleration of the evolution to core collapse is
due to the changing nature of energy transfer in the
presence of a wide mass spectrum. Relaxation pro-
cesses tend to establish energy equipartition (see, e.g.,

Binney & Tremaine 1987, Sec. 8.4). In a cluster where
the masses of the stars are nearly equal, this can be (very
nearly) achieved. The core collapse is then a result of en-
ergy transfer from the inner to the outer parts of the clus-
ter, leading to gravothermal contraction (Larson 1970;
Lynden-Bell & Wood 1968). A large difference between
the masses of the stars allows a more efficient mechanism
for energy transfer. In this case, energy equipartition
would tend to bring the heavier stars to lower speeds.



Observed NSCs
• Densest stellar systems in 

the universe 

✦ Generally higher M*, σ 
than globular clusters 

• BH content depends on 
origin, but nonzero 

• We use sample of 
Georgiev & Böker: ~200 
NSCs fit to King models 

✦ Central densities high 
but uncertain (Stone, Küpper, & Ostriker 16) 

(Mostly from Georgiev & Böker 14)
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Figure 2. Nuclear star cluster quantities of interested plotted against the mean 1D velocity dispersion �̄. In this figure we focus on

“cluster-averaged” quantities. Panel (A) shows total cluster mass Mtot; panel (B) shows mean cluster density ⇢̄; panel (C) shows mean
cluster relaxation time t̄r; panel (D) shows half mass radius rh. In all panels the dashed and dotted lines show 1� and 2� contours from

fitted 2D Gaussians. Data is taken from Böker et al. (2004); Côté et al. (2006); Georgiev & Böker (2014).

derailed by the nonzero metallicity of stellar participants.
Collision products will shed most of their mass through line-
driven winds, thus forming stellar-mass compact remnants
in supernova explosions; even very low-metallicity progeni-
tors of modest size (Z = 0.001Z�; M ⇠ 500M�) lose enough
mass via winds to prevent IMBH formation (Glebbeek et al.
2009).

2.2 Delayed Collisional Runaways

Let us assume that there is no prompt collisional runaway;
instead, massive stars segregate to the center of the star
cluster and die in supernovae there, leaving behind a smaller
population of compact object remnants (most neutron stars
and likely some SBHs will escape in natal kicks). These SBHs
will swap into primordial binaries in binary-single encoun-
ters, and the larger interaction cross-sections of these bina-
ries will eventually lead to ejections of many black holes.
As this process repeats, the number of SBHs declines until
either 0 � 1 remain, or the SBH-SBH interaction time has

c
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NSC Evolution
• Relaxation time tr << tH 

✦ Roughly isothermal if isolated (and lacking MBH) 

• Qualitative difference from open/globular clusters: often 
σ>40 km/s (Miller & Davies 12) 

✦ Energetically possible to burn all primordial binaries (need 
average ρ>105M⦿/pc3 to do this in a Hubble time) 

✦ 2+1 scatterings (BH + 2 stars) inefficient at ejecting BHs 
for σ~10s km/s 

• Expectation: core collapse deeper and achieved sooner/
more frequently; survivable for BHs



Tidal Capture

• Close passage of hyperbolic orbit binds two stars together 

• Excess orbital energy ΔE deposited into mode spectrum Ylm
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Figure D1. The dimensionless tidal coupling constants, T`(⌘),
for both ` = 2 (blue) and ` = 3 (orange) modes in a npoly = 3/2
polytropic star. Calculation of T2 and T3 involves a summation
over the lowest-order p-modes, but in general it is the f-mode that

dominates. These curves are independent of perturber mass ratio.
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Figure D2. The total energy (units of J) deposited into me-

chanical oscillations of a solar-type, npoly = 3/2 star perturbed

by a 10M� BH, as a function of the pericenter radius r in units
of tidal radii. The blue curve shows the contribution of ` = 2

modes, the orange curve the contribution of ` = 3 modes, and

the purple curve (overlapping with blue) their combined e↵ect.
The horizontal black lines show the typical energy at infinity of

clusters with � = 80 km s�1 (solid), � = 40 km s�1 (dashed),
and � = 10 km s�1 (dotted).

best fit at 1/� ⇠ �E/(GM2
?/R?) < 0.05 (an approximation

for where the linear tides approximation is valid) we have

� = 1.288�0.0899. (D5)

APPENDIX E: N-BODY SIMULATIONS

For the numerical tests presented in § 4, we used two di↵er-
ent integrators: one for single-body integrations and one for
few-body integrations. The single-body code is a simple Her-
mite integrator with a fixed time step, whereas the few-body
code is a modified version of the algorithmic chain integrator
AR-Chain developed by Mikkola & Merritt (2006). The lat-
ter uses algorithmic chain regularization for high-precision
integration of few-body dynamics, and is capable of handling

10 50 100 500 1000
1.0

2.0

1.5

c

l

Figure D3. The � parameter required for tidal capture shown

as a function of � ⌘ 2GM?/(R?�2). The black line is an exact
numerical solution, and we also show power law best fits for � <
0.05 (dotted green line) and � < 0.15 (dashed purple line). The

former, fiducial curve is given in the text as Eq. D5, while the
alternate one (which may extend too far into the nonlinear tides

regime, beyond which our treatment of mode excitation breaks

down) is � = 1.165�0.1058.

velocity-dependent forces e�ciently. It includes relativistic
post-Newtonian terms up to order PN2.5 (Mikkola & Mer-
ritt 2008).

Both codes integrate the orbits of SBHs in the gravi-
tational field of a background NSC. For computational con-
venience, this star cluster is approximated by a Plummer
sphere with total mass, MNSC , and Plummer scale radius,
a. Following, e.g., Heggie & Hut (2003), its mass density
profile can be written as

⇢(r) =
3MNSC

4⇡a3

✓
1 +

r2

a2

◆�5/2

, (E1)

having a core of size rc = a/
p

2 with a central density of
⇢0 = 3MNSC/(4⇡a

3). Its half-mass radius is given by rh ⇡

1.305a. The velocity dispersion at radius r can be written
as

�(r) =

s
GMNSC

6a

✓
1 +

r2

a2

◆�1/2

, (E2)

with a central velocity dispersion of �0 =
p

GMNSC/6a.
These quantities, density and velocity dispersion, are of key
importance for the runaway time scale of the SBHs. We
relate these three-dimensional quantities to observables by
defining the NSC’s (projected) e↵ective radius as Reff =
a/

p

22/3 � 1, and the velocity dispersion at this radius to
be

�eff = 22.42

✓
MNSC

106 M�

◆1/2 ✓ 1 pc
Reff

◆1/2

km s�1 (E3)

E1 Phase-space di↵usion

Weak encounters with background stars will let the SBHs
di↵use through phase space while they are orbiting within
the gravitational potential of the NSC. The di↵usion can
be expressed as change in velocity of an SBH by �~v per
unit time. We can split this change into a component along

c
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Evolution of Tidal Captures
• Isolated tidal capture binary random 

walks in energy 

• Interacting tidal capture binary 
random walks in angular momentum 
too 

• Outcome depends on M• 

✦ M• small: star inflates and is 
consumed in runaway partial 
disruptions (Ivanov+07) 

✦ M• large: complex dynamical 
outcome from cluster interactions 

• Runaway growth: dM•/dt α M•
4/3 

✦ Reach first e-fold in a Hubble 
time if central ρ>107M⦿/pc3
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Figure 6. Di↵erent timescales relevant for the evolution of tidally
captured stars. The shortest is often the orbital time, torb, shown

in blue, although for large values of M• it is the angular momen-

tum relaxation time tJ, shown in green. The time for the star
to enter a runaway inflation regime, tinfl (black solid), and the

time for orbital energy loss to circularize the orbit of the cap-

tured star, tcirc (black dotted) are each small multiples of torb.
Because tinfl < tcirc, only the former process is relevant. The bi-

nary ionization timescale tion is shown in purple, and is generally

greater than tJ. The longest timescale in the problem (not shown)
is the Kelvin-Helmholtz time for a captured star to radiate dis-

sipated mode energy. When tinfl < tJ (regime I), captured stars
are e�ciently consumed via a series of runaway partial tidal dis-

ruptions. When tJ < tinfl < tion (regime II), stars will quickly

random walk to larger pericenters where tidal forces are initially
irrelevant, but may still inflate and be disrupted through collisions

with other tidally captured stars. When tion < tinfl (regime III),

captured stars cannot inflate significantly before being ejected or
swapped out by encounters with unbound stars. In this diagram,

� = 60 km s�1, nc = 108 pc�3, and we have used a Kroupa IMF

truncated at a maximum mass of 1M�.

pericenter at a per-star rate

Ṅdes ⇠
3N?R

2
?�

7

8G3M3
•

(27)

⇠4⇥ 10�6 yr�1N?

10

✓
R?

R�

◆2 ✓ �
40 km/s

◆7 ✓ M•

10M�

◆�3

.

In contrast, weaker (soft) coagulative collisions happen pref-
erentially at apocenter, with a per-star rate

Ṅcoag ⇠

3N?M?R?�
5

4G2M3
•

(28)

⇠10�3 yr�1N?

10
M?

M�

R?

R�

✓
�

40 km/s

◆5 ✓ M•

10M�

◆�3

.

Generally, coagulative collisions happen at rates orders of
magnitude higher than destructive ones, which we hereafter
neglect. These stellar mergers will nonetheless deposit huge
amounts of kinetic energy into the merger product; much
of this will thermalize promptly due to shocks, inflating the
star to the point where it can likely be tidally disrupted on
a subsequent pericenter passage, or grow to a size where it
could engulf the central BH.

The few-body dynamics of these tidal capture mini-
cusps are likely complex, as scalar resonant relaxation of
stellar orbits should be suppressed by GR apsidal preces-
sion (Hopman & Alexander 2006), even vector resonant re-
laxation may be likewise suppressed if the BH is spinning

(Merritt & Vasiliev 2012), and the number of stars may be
too few for standard two-body relaxation approximations
to hold. Nonetheless, basic density considerations indicate
that direct collisions should be frequent, and the aftermath
of these will be inflated stars that are easily disrupted by the
BH. Once the BH has grown to a very large size, typically
& 103M�, ionization of tidally captured stars in encounters
with unbound stars will become frequent (tion < torb < tinfl).
At this point tidal capture may turn o↵ as a growth channel,
leaving only full tidal disruptions to grow the BH.

We therefore conclude that tidal capture events gener-
ally result in delayed tidal disruptions due to inflation of the
captured star: this occurs either as a result of runaway mode
excitation (in analogy to Li & Loeb 2013), or following the
thermalization of direct soft collision kinetic energy. These
delayed tidal interactions might be quite di↵erent from stan-
dard TDEs in that they involve interaction of the BH with
stars that have radially inflated and are possibly more mas-
sive than normal stars. We will assume that the end point
of such events is the consumption of the bulk of the mass of
the normal star by the SBH. This will likely occur at super-
Eddington rates while the black hole is small. Such super-
Eddington accretion disks may lose some mass in outflows,
though the exact amount is still debated in the simulation
literature (Jiang et al. 2014, for example, find ⇡ 30% of
the inflowing mass lost in a wind). We neglect mass loss in
super-Eddington outflows, but emphasize that it could be-
come important for SBH growth if it reaches an order unity
fraction of the mass inflow rate.

4 PHASE-SPACE DIFFUSION AND
FEW-BODY DYNAMICS

The analytic description of runaway SBH growth presented
in the prior section neglects some basic dynamical processes
that are di�cult to account for in a closed form. For this
reason, we have performed two sets of simple numerical sim-
ulations to test the validity of our analytical prescriptions
in a more realistic, dynamical setting.

The first set are one-body orbital integrations of single
SBHs in an analytic background potential representing an
NSC. The SBH’s di↵usion through phase space is treated
analytically through calculation of the di↵usion coe�cients
(e.g., Binney & Tremaine 2008) at each time step and respec-
tive modification of its velocity vector. The background po-
tential is taken as static and only evolves if the SBH “feeds”
on it, i.e., by (probabilistically) capturing or disrupting a
star, which reduces the mass of the NSC. Moreover, the
scale radius of the background potential can expand due
to dynamical heating from the SBH. These highly idealized
simulations are valuable for testing our approximate “n⌃v”
estimates, and the influence of phase-space di↵usion on the
growth rates of the SBHs.

The second set of simulations are few-body integrations
of a small number of SBHs in the same type of background
potential. These simulations are significantly more realistic
in that they include mergers of SBHs and their dynamical
ejections through gravitational-wave recoils or few-body in-
teractions. They provide a more physical test of the analytic
model of §3. Comparisons of our analytic prescriptions with
results from both sets of simulations are presented in the

c
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Figure 5. Rates of BH-single and BH-binary interactions, plot-

ted over the parameter space of cluster structural parameters �
(cluster velocity dispersion) and n? (stellar density). The green
lines (n? / �3) show curves of constant tidal capture rate Ṅ•?,
while the purple lines (n? / �) show curves of constant binary in-

teraction rate Ṅ•b. Solid lines show rates 10�8 yr�1, dashed lines
show rates 10�9 yr�1, and dotted lines show rates 10�10 yr�1.

In all curves we have assumed interactions with solar-type main
sequence stars and SBH masses M• = 10M�. The shaded param-

eter space above the solid green curve is conducive to runaway

growth through tidal capture, although areas above this curve
and also above the solid purple curve may see this growth inhib-

ited by more frequent binary interactions. Binary interactions are

less important in the darkly shaded parameter space. Data points
show the Georgiev & Böker (2014) sample of NSCs; the large blue

dots indicate best estimates for central cluster density, while the

small black dots illustrate the more robust stellar density at the
half mass radius.

speeds vej (Valtonen & Karttunen 2006), we find that en-
counters between SBHs and primordial binaries eject the
newly bound SBH-star pair with speed > v at a rate

Ṅej(v) =
⇡fbG

2M2
bnc

32�v2 ln(amax/amin)

✓
Mb

M•

◆2/3

. (18)

Clearly, frequent ejections with v & vesc(0) will endanger any
runaway, but even smaller values of v may abort runaway
growth, as SBHs ejected to the low-density cluster halo will
not grow through star capture and may take very long times
to sink back to the center (Morscher et al. 2015). We there-
fore compute a “core escape velocity” v2c ⌘ 2�(rh)� 2�(0),
and we find that Ṅej(vc) > Ṅ•? when

�2 .fb(⇡
2/8� 1)
32�

1

ln(amax/amin)(ln(rh/21/2rc)� ⇡/4)

⇥

M̄?

M•

GM̄?

R̄?
(19)

⇠(1 km s�1)2��1
2 M�1

20 m2
?r

�1
? .

In the above, we have assumed rh � rc; we see that pri-
mordial binaries are unlikely to e�ciently eject SBHs from
NSC cores, though they will be much more e↵ective at this
in open and globular clusters.

Even though � and M• are usually large enough for the
SBH to survive ejection in binary-single encounters, these
interactions can still endanger a tidal capture runaway be-
cause tides capture stars onto highly eccentric orbits. If the
SBH is part of a relatively wide (but still hard, by clus-
ter standards) binary system at the time of capture, then

chaotic three-body interactions can ensue, and it is likely
that the captured star will quickly scatter to a larger peri-
center where it no longer has the chance to undergo strong
tidal interactions or circularize, as we discuss further in the
next section. In a conservative sense, therefore, it is best to
treat only the darkly shaded part of Fig. 5 as the part of
parameter space where runaway tidal growth is favored.

3.3 Outcomes of Star Capture

After a star has been tidally captured by a BH, it will return
to pericenter and will su↵er further strong tidal encounters.
However, unlike on the first (unbound) passage, when tidal
forces excite oscillatory modes in a previously quiescent star,
repeated pericenter passages on a bound orbit can both ex-
cite and de-excite oscillation modes. In the absence of dis-
sipation, the exchange of energy between modes and orbit
will be either quasi-periodic and bounded (if the pericen-
ter is large relative to a “chaos boundary” produced by the
overlap of mode-orbit resonances - see Mardling 1995a), or
will undergo an unbounded random walk (if the pericenter
is small relative to the chaos boundary). In practice, tidal
capture in the high-� environment of a NSC requires a small
pericenter, and so the mode amplitude will follow a chaotic
random walk in the absence of dissipation, often reaching
nonlinear sizes (Mardling 1995b).

The first passage between the SBH and an unbound star
transfers the following orbital energy

�E0 =
GM2

⇤
R⇤

✓
M•

M⇤

◆2 1X

`=2,3,...

✓
R⇤

Rp

◆2`+2

T`(Rp) (20)

into oscillation modes, binding the star to an orbit with ini-
tial period torb. Here ` is a spherical harmonic modenumber
and T` < 1 is a sum over all radial modenumbers with os-
cillation frequencies !n (see Appendix D for more details).
In general, the lowest order ` = 2 mode dominates the en-
ergy budget for mechanical oscillations. The instability of
initially linear oscillations to stochastic growth can now be
understood by taking the mode phase �n = !ntorb, and ex-
amining the per-orbit phase shift ��n = !n�torb, where
�torb = (3⇡/

p

8)GM•�E0/|E|

5, and E is the binding en-
ergy of the tidally captured orbit. If �� > 2⇡, as is generally
the case for TC in NSCs, stochastic instability and a random
walk in mode amplitude will develop (Ivanov & Papaloizou
2004).

However, real stars possess internal dissipational mech-
anisms, and the presence of these qualitatively alters the
evolution of a tidally captured star. Observed circulariza-
tion rates of tidally interacting stars imply an internal qual-
ity factor Q ⇠ 105�6 (Meibom & Mathieu 2005), much lower
than the Q values predicted by linear dissipation theories.
This may be explicable by nonlinear mode-mode couplings;
once the energy in a mode exceeds a threshold amplitude,
the development of parametric instability dumps its energy
into a chain of daughter modes (Weinberg et al. 2012). These
nonlinear mode-mode couplings serve as a relatively e�cient
source of dissipation, preventing random walks in mode am-
plitude from proceeding far, and leading to a steady state
mode energy (Lai 1997) comparable to the “capture” value
after the first pericenter passage.

Because �E0 greatly exceeds the threshold energy for
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Figure 8. The mass growth histories of SBH seeds and developing

IMBHs in our model; we plot Ṁ• in as a function of black hole
mass for clusters with initial central densities ⇢c = 108 pc�3

(i.e. on the cusp of runaway growth for a M• = 10M� seed. The

purple, blue, and green curves have initial core radii rc = 0.01 pc,
rc = 0.03 pc, and rc = 0.1 pc, respectively, corresponding to

di↵erent velocity dispersions which are labeled in the plot. The

three dots along each curve label M• at times 108 yr, 109 yr,
and 1010 yr after the SBH enters the cluster core with a mass of

M• = 100M�.

regime within a Hubble time often require periods of super-
Eddington growth; throughout this paper we assume that
these rates of mass inflow are possible, but we emphasize
here that such an assumption is still an open question in
the accretion literature (Jiang et al. 2014; Sa̧dowski et al.
2015).

Another notable feature of our scenario is that SMBH
seeds formed through tidal capture runaways are likely born
with negligible spin. Although the onset of the runaway may
involve tidal captures of the innermost stars, once di↵usion-
limited growth begins, it will come primarily from stars on
radial orbits taken from more distant regions of the star
cluster. Even if the cluster is endowed with net rotation,
such rotation is unlikely to be imprinted on the almost radial
orbits vulnerable to tidal capture or disruption. In contrast,
SMBHs that have grown substantially through comparable-
mass mergers or through accretion from gas inflows on larger
scales will generally approach larger values of spin (Berti
& Volonteri 2008), though this can be prevented if mass
accretion is dominated by short-lived episodes of gas inflow
from random directions (King & Pringle 2006).

6 COMPARISON WITH OBSERVATIONS

So far, we have seen that clusters of su�ciently high central
density and velocity dispersion will enter a runaway (super-
exponential) phase of BH growth. This runaway regime be-
gins slowing as the loss cone depletes, and then putters out
into a slower di↵usion-limited growth rate once the BH has
eaten the entire core of its host cluster. Even at this more
modest di↵usion-limited rate, however, BHs can grow signif-
icantly over a Hubble time by tidal capture and disruption.

In this section, we compare the predictions of our model
to the observed demographics of NSCs, and to signatures
of massive black holes in galactic nuclei. These two data

sets present several tests of our model, best formulated as
questions. Do we see NSCs unstable to a tidal capture run-
away that lack massive central black holes? And do we see a
SMBH mass distribution in galactic nuclei that falsifies our
model of SMBH seed formation?

6.1 Observed NSCs

Using the simple analytical estimates for tidal capture rates
that we derived in §3 and validated in §4, we can now ex-
amine observed NSCs to determine their tidal capture run-
away timescales. Fig. 9 plots the tidal capture rate ṄTC as a
function of 1D cluster velocity dispersion �̄ (as before, this
is estimated using the fitted cluster mass and radius) for an
SBH with M• = 10M�, assuming that there is no IMBH or
SMBH to modify the central potential. We note that esti-
mates of the tidal capture rate are uncertain by one order of
magnitude because of a factor ⇡ 3 uncertainty in the fitted
cluster concentration parameter. Specifically, all clusters in
this sample were fit to a grid of King models, but this grid
was coarsely sampled in the dimension of rc: the only possi-
ble concentrations were 5, 15, 30, and 100 (Georgiev, private
communication).

Many of the NSCs in Fig. 9 have tidal capture rates
ṄTC & 10�8 yr�1, indicating that they are formally unsta-
ble to runaway SBH growth through tidal capture. These
NSCs generally have �̄ & 30 km s�1, and in some cases have
truly enormous TC rates (due to their high central densi-
ties). We highlight here two systematic uncertainties that
may cause substantial error in our estimates of central den-
sity and derived quantities such as ṄTC: first, the grid of rc
only extends up to concentrations C = 100, meaning that
many clusters may be even more concentrated and have even
higher ṄTC. Secondly, the estimates of cluster mass Mtot as-
sume a constant mass-to-light ratio, and do not account for
color gradients due to dynamical or primordial mass segre-
gation. Both of these e↵ects concentrate surface brightness
in the center of the NSC and cause an overestimation of clus-
ter concentration C. Observations of individual NSCs often
find color gradients, but the direction of the gradient can
vary from cluster to cluster (Kormendy & McClure 1993;
Matthews et al. 1999; Carson et al. 2015). A careful resolu-
tion of these two uncertainties is important, but will have
to wait for future observational work.

We also can compare our predictions to the smaller
number of galaxies which have both NSC mass measure-
ments (or upper limits) and dynamical SMBH mass mea-
surements (or upper limits). In Fig. 1 we show our prediction
for saturation mass Msat for massive black holes that have
been growing through star capture for a Hubble time. We
plot Msat, and measured NSC/SMBH masses, against the
host galaxy’s e↵ective dispersion �e↵ , which is comparable
to the NSC internal velocity dispersion (Leigh et al. 2015).
We find that the smallest SMBHs with dynamically mea-
sured masses (106M� . M• . 107M�) are within a factor
of a few of Msat. In galaxies with a larger �e↵ , SMBH masses
are much larger than Msat, implying that other mechanisms
dominate the growth of these SMBHs, in agreement with the
Soltan argument. In smaller galaxies with �e↵ . 40 km s�1,
dynamical mass measurements only put upper limits on the
presence of an SMBH, and these upper limits are generally
well below the predicted saturation mass. This implies that,
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Figure 9. Tidal capture rates, ṄTC, plotted against 1D NSC

velocity dispersion �̄. In all of these calculations ṄTC is pre-
sented for M• = 10M�. The dashed and dotted black ellipses

show the 1� and 2�� contours. Notably, many of the more mas-

sive NSCs are above the solid red line and have tidal capture
runaway timescales < tH, indicating that they may already har-

bor unresolved massive black holes. Almost no NSCs exist in the

runaway regime that have �̄ < 30 km s�1.

as expected, a tidal capture runaway has not occurred in
these low velocity dispersion systems.

This low-�e↵ result is in reasonable agreement with our
prediction that NSCs must have a minimum central density
in order to begin growing SBHs through runaway star cap-
ture. As we see in Fig. 9, it is only NSCs with �̄ & 30 km s�1

that possess high enough central density to enter the run-
away regime within a Hubble time. This impressive pair of
observational coincidences - the lack of SMBHs in galaxies
with �̄ . 40 km s�1

and the unfavorably low central densi-
ties of NSCs in galaxies with �̄ . 30 km s�1 - is a nontrivial
piece of circumstantial evidence in favor of our model for the
birth of massive black holes in galaxies of moderate velocity
dispersion.

6.2 Observed IMBHs

The evidence for IMBHs in the nuclei of dwarf or other
galaxies is mixed, but these observations are a crucial dis-
criminant between models of SMBH seed formation, which
predict very di↵erent minimum IMBH masses: ⇠ 102�3M�
for Pop III supernovae, ⇠ 103�4M� for traditional “run-
away collision” scenarios, and ⇠ 105�6M� for direct collapse
of high-z minihalos. In our scenario, we expect a distribu-
tion of black hole masses; if the runaway time is ⌧ tH, then
typically M• ⇠ Msat(tH,�). It is possible for our scenario
to produce smaller IMBHs in clusters where the runaway
time is ⇠ tH, but because this requires some tuning we ex-
pect these to be rare. Our model therefore predicts a general
minimum IMBH mass at Msat(tH,�), and the distribution
or even existence of small IMBHs o↵ers a promising way to
falsify our predictions.

Due to the di�culty of dynamical mass measurements
in dwarf galaxies, the most common avenues for IMBH de-
tection are indirect. Searches for AGN in dwarf galaxies have
returned many hundreds of promising candidates (Greene &
Ho 2004; Reines et al. 2013). The smallest of these have lower
mass limits M• & 103�4M� based on luminosity arguments

(Moran et al. 2014). A smaller number of dwarf galaxies have
dynamical mass estimates for central BHs; one particularly
exciting recent result found a M• ⇡ 5⇥ 104M� (Baldassare
et al. 2015). We note that other, future, avenues for IMBH
detection do exist. For example, the halo of the Milky Way
galaxy may host many IMBHs left over from the interplay
between hierarchical structure formation scenarios and GW
recoil during IMBH-IMBH mergers (?Merritt et al. 2009).
While these wandering IMBHs are in principle detectable by
the hypercompact stellar systems that surround them, none
have been found to date (O’Leary & Loeb 2012).

The existence of a large population of IMBHs with
M• ⌧ Msat would not be expected in the context of our
model, and there is not yet clear evidence that such a pop-
ulation exists.

6.3 Tidal Disruption Rates

A final consistency check for our model is the rate of stel-
lar tidal disruption events. From Fig. 8 we see that an NSC
hosting a massive black hole of mass M• = 105M� should
be tidally disrupting stars at a rate 10�5 yr�1 . Ṅ .
10�3 yr�1, depending on the host NSC �. These numbers
are roughly consistent with empirically calculated rates of
stellar tidal disruption (Stone & Metzger 2016), although
we caution that these empirical TDE rates are based on ex-
trapolating directly determined TDE rates in larger galaxies
down to smaller masses (where surface brightness profiles
cannot be resolved on the relevant scales).

A more useful constraint is the volumetric tidal dis-
ruption rate, as this is dominated by the smallest galax-
ies which host central massive BHs (Wang & Merritt 2004;
Stone & Metzger 2016). Although our current sample of ob-
served tidal disruption flares is small and su↵ers from selec-
tion e↵ects (roughly a dozen optically selected events, and
a similar number detected through soft X-ray emission), it
appears that the volumetric event rate inferred from obser-
vations is at the extreme low end of theoretical predictions
(van Velzen & Farrar 2014; French et al. 2016), which may
imply an absence of low mass (M• . 106M�) black holes in
the low redshift universe (Stone & Metzger 2016). Although
individual TDEs may arise from smaller IMBHs5, a high oc-
cupation fraction of IMBHs in dwarf galaxies would be hard
to reconcile with the observed low volumetric TDE rate.

We note here that past works have shown that star cap-
ture can contribute significantly both to the mass growth
of small SMBHs (Magorrian & Tremaine 1999), and to the
lower end of the X-ray AGN luminosity function (Milosavl-
jević et al. 2006). However, these past arguments have been
based on present-day observations of low-mass SMBHs and
their host galaxies. The most novel contribution of this
paper is the self-consistent evolutionary picture we have
presented, which shows how these low-mass SMBHs must
emerge from NSCs above a certain ⇢c and � threshold.

5 For example, an X-ray selected TDE flare was recently found
in a small dwarf galaxy. If we infer the BH mass from stan-

dard galaxy scaling relations, we find 105.1 . M•/M� . 105.7

(Maksym et al. 2014).
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Conclusions
• Runaway tidal captures possible in clusters above critical σ (~40 km/s),                     
ρ (~10

7
M⦿/pc

3
) 

✦ Often slower runaway than other varieties 

✦ These criteria reflect bottom end of NSCs hosting observed SMBH population 

• Uncertainties: 

✦ Evolution of tidal capture binaries for large M• 

✦ Periods of super-Eddington accretion at peak of runaway 

✦ Exogenous effects on NSC evolution 

✦ And, of course: approximate analytic estimates! 

• Super-exponential growth slows after cluster core consumed 

• Runaway MBH growth saturates at M•   ~  (M*tσ
3
/G)

1/2  
~ 10

6
M⦿(σ/50km/s)
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