Not-So Runaway Growth of Massive Black Holes

Nicholas Stone

Einstein Symposium 2016

MBH Seeds

Gas cools very slowly forming a stable disc

Globally

unstable gas

center and a

supermassive

the galaxy

star forms

Locally

unstable

gas flows

towards the

galaxy center

infalls towards

Dark matte

Gas

First stars: maybe one star per galaxy, up to hundred times larger than the sun

The stellar

into a small

black hole,

what is left

of the star

fragments

into stars,

and a dense

star cluster

forms

Gas

embedded in

core collapses

If the star is more massive than ~300 solar masses, it collapses into black hole, ~200 times the Sun

The black hole swallows the envelope growing up to a million solar masses

Stars merge into a very massive star, that collapses into black hole ~1000 times more massive than the Sun

Nuclear Star Clusters and MBHs

(Stone, Küpper, & Ostriker 16)

Runaway Collisional Growth

- Third channel for SMBH seed
 formation at high z
 - Intermediate in mass between pop III and direct collapse

(Sesana 11)

Runaway Collisional Growth

- Third channel for SMBH seed formation at high z
 - Intermediate in mass between pop III and direct collapse
- Several variants
 - Supermassive star
 - Compact remnant subcluster
 - We propose slow low-z runaway through tidal encounters in NSCs

(Gurkan+04)

Observed NSCs

- Densest stellar systems in the universe
 - Generally higher M_{*}, σ
 than globular clusters
- BH content depends on origin, but nonzero
- We use sample of Georgiev & Böker: ~200 NSCs fit to King models
 - Central densities high but uncertain

(Stone, Küpper, & Ostriker 16) (Mostly from Georgiev & Böker 14)

NSC Evolution

• Relaxation time $t_r \ll t_H$

Roughly isothermal if isolated (and lacking MBH)

- Qualitative difference from open/globular clusters: often σ>40 km/s (Miller & Davies 12)
 - Energetically possible to burn *all* primordial binaries (need average ρ>10⁵M_☉/pc³ to do this in a Hubble time)
 - 2+1 scatterings (BH + 2 stars) inefficient at ejecting BHs for σ~10s km/s
- Expectation: core collapse deeper and achieved sooner/ more frequently; survivable for BHs

Tidal Capture

(Stone, Küpper, & Ostriker 16)

- Close passage of hyperbolic orbit binds two stars together
- Excess orbital energy ΔE deposited into mode spectrum Y_{Im}

$$\Delta E = \frac{GM_{\star}^2}{R_{\star}} \left(\frac{M_{\bullet}}{M_{\star}}\right)^2 \sum_{\ell=2,3...}^{\infty} \left(\frac{R_{\star}}{R_{\rm p}}\right)^{2\ell+2} T_{\ell}(R_{\rm p})$$

Evolution of Tidal Captures

- Isolated tidal capture binary random walks in energy
- Interacting tidal capture binary random walks in angular momentum too
- Outcome depends on M.
 - M. small: star inflates and is consumed in runaway partial disruptions (Ivanov+07)
 - M. large: complex dynamical outcome from cluster interactions
- Runaway growth: dM./dt a M.
 - Reach first e-fold in a Hubble time if central p>10⁷M_☉/pc³

(Stone, Küpper, & Ostriker 16)

Tidal Capture Runaways

(Stone, Küpper, & Ostriker 16)

Saturation of the Runaway

- Core eaten at superexponential rate, dM_•/dt α M_•
 - Tidal disruptions continue if tidal captures deactivate
- After NSC core consumed, $dM_{\bullet}/dt \alpha M_{\bullet}^{-1}$
 - Growth enters diffusionlimited loss cone regime
 - ◆ Growth saturates at M_• ~ $(M_*t\sigma^3/G)^{1/2} \sim 10^6 M_{\odot}(\sigma/50 \text{ km/s})^{3/2}$

(Stone, Küpper, & Ostriker 16)

Observational Implications

- Many undetected MBHs in NSCs with σ>40 km/s ?
 - ◆ Observational coincidence [?]: most NSCs with σ<30-40 km/s below runaway tidal capture rate threshold!
- Tidal disruption rates from "saturated" BHs grown in this way consistent with semi-empirical estimates (Stone & Metzger 16)

(Stone, Küpper, & Ostriker 16)

Conclusions

- Runaway tidal captures possible in clusters above critical σ (~40 km/s), ρ (~10⁷M_o/pc³)
 - ✦ Often slower runaway than other varieties
 - These criteria reflect bottom end of NSCs hosting observed SMBH population
- Uncertainties:
 - ✦ Evolution of tidal capture binaries for large M.
 - Periods of super-Eddington accretion at peak of runaway
 - Exogenous effects on NSC evolution
 - ◆ And, of course: approximate analytic estimates!
- Super-exponential growth slows after cluster core consumed
- Runaway MBH growth saturates at M. ~ $(M_*t\sigma^3/G)^{1/2} \sim 10^6 M_{\odot} (\sigma/50 \text{ km/s})^{3/2}$