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the larger-scale cavities are being blown around by atmospheric pressure gradients (Brüggen
et al. 2005; Heinz et al. 2006; Morsony et al. 2010).

Fig. 10.— Examples of systems showing multiple cavities and shocks. Upper left: Unsharp
mask 0.3 – 2 keV image of the NGC 5044 group showing multiple cavities (David et al.
2009). Upper right: Region around M87 in the Virgo cluster, showing deviations from the
azimuthally averaged surface brightness in the energy band 0.5 – 2.5 keV (Forman et al.
2007). Lower left: 0.3 – 2 keV image of the NGC 5813 group, showing multiple shock
fronts and cavities (Randall et al. 2011). Lower right: Unsharp mask image of 2A0335+096
showing multiple cavities and sound waves(Sanders et al. 2009).

Even in cases where jet heating is highly anisotropic, following an outburst the lowest
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Fig. 2.— Left: Exposure corrected, background subtracted, 0.3–3 keV Chandra image, with point sources removed and smoothed with
a � = 1.500 Gaussian. The image shows bright rims surrounding an inner pair of cavities, a prominent elliptical edge surrounding a pair of
cavities at intermediate radii (with the more obvious cavity to the SW and the NE cavity apparently broken into two connected cavities),
and a subtle outer edge associated with a faint pair of outer cavities (with the more obvious cavity to the NE). Right: X-ray image divided
by a 2D fitted beta model and smoothed with a � = 600 Gaussian, shown on the same scale. The outer cavities and edges are more clearly
seen in this residual image, while the inner cavities are not visible due to the larger smoothing scale and saturation of the color scale. The
image also reveals a faint “channel” of decreased surface brightness extending to the north, apparently connected to the NE outer cavity.
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Fig. 3.— Left: Background and exposure corrected 0.4–7.2 keV XMM-Newton image of N5813. Right: Smoothed Chandra image shown
on the same scale, with the intensity scale chosen to better show the faint, outer emission.
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Fig. 5.— The energy history of different traced regions of the simulation studied here. In the left panel we
present the evolution with time of three energy components of the ICM gas that starts before the jets become
active at t = 0 inside an eighth of ball with r = 15 kpc centered at the origin. It is an eighth of a ball as we
simulate one eighth of the space. The green (upper) line represents the internal energy, the blue (middle)
line represents the kinetic energy, and the red (lower) line represents the gravitational energy of this traced
gas. The middle panel shows the energy histories of the torus shown in Fig. 3, and the right panel shows
the energy histories of the torus shown in Fig. 4. All energies are shown relative to their values at t = 0.
The initial internal energies Ein(0) of the traced regions, from the left panel to the right, are 3.1× 1058 erg,
5.5× 1057 erg and 1.1× 1058 erg, respectively. The left and middle panels are cut off at the time when the
traced material starts leaving the grid.
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Fig. 11.— Time-averaged (between 1 and 3 Gyr) radial profiles of heating and cooling emissivities in units of erg s�1 cm�3 for the jet
cones (left column) and the ambient region (right column). Data marked with open squares represent processes that are cooling for a
certain radial bin. The top panels shows the contributions from radiative cooling, shock heating, and transport plus adiabatic processes.
The last term is further broken down into advection, convection, and adiabatic compression/expansion in the bottom panels. The amount
of mixing heating shown in the top left panel is inferred from the fact that there is rough balance between heating and cooling (see Figure
10).

By estimating the amount of advective energy transfer
through the surfaces of each sector, we find that the en-
ergy primarily flows from the interface between the jet
cones and the ambient region, as opposed to radial inflow
from larger radii. In other words, the ambient region,
though having net cooling, is pumped by flows of energy
from already-heated gas. The gas further gains energy
by adiabatic compression as it flows inward radially as
a part of gentle circulation. Note that for the first two
radial bins in the upper right panel of Figure 11, there
appears to be some net energy losses. This loss of in-
ternal energy could be compensated by mixing with the
non-negligible amount of jet materials within the inner
20 kpc in the ambient region (see the right columns of
Figure 2).
In terms of the overall contributions by di↵erent pro-

cesses within the whole cluster core (i.e., the averaged
heating and cooling luminosities integrated within 100
kpc), we find that within the jet cones, Lc : Lmix :
(Ladv+Lconv+Lad) : Lsh = (�1.52⇥1044) : 9.14⇥1044 :
(�1.37 ⇥ 1045) : 4.08 ⇥ 1044 ' (�0.11) : 0.67 : (�1.0) :
0.30. That is, cooling is dominated by adiabatic expan-
sion instead of radiative cooling; heating from bubble
mixing contributes about twice the amount of heating
from shocks within the cooling radius. For the ambient

region, Lc : (Ladv +Lconv +Lad) : Lsh = (�1.20⇥ 1045) :
9.95 ⇥ 1044 : 2.05 ⇥ 1044 ' (�1.0) : 0.83 : 0.17. In
other words, shock heating slows down radiative cooling
by ⇠ 17%, while the rest of gas internal energy comes
from advection and adiabatic compression. The over-
all energetics suggest that in our simulation, most in-
jected energy from the AGN is stored within the bub-
bles, whereas the energy associated with shocks contain
a minor portion. This is consistent with the energy par-
titions inferred by recent analysis of the Perseus cluster
(Zhuravleva et al. 2016).

4. DISCUSSION

4.1. Turbulent heating

In Section 3.2, we showed that the kinetic energy as-
sociated with the tracer particles is always only at the
percent level compared to the internal energy (Figure 6
and 7). The kinetic energy contains contributions not
only from turbulence but also from shocks and waves.
To better understand the energetics, we decompose the
velocity fields into the compressible (which traces shocks
and waves) and incompressible (which measures turbu-
lence and g-modes) components (Yang & Reynolds 2015;
Reynolds et al. 2015). The total kinetic energies within
100 kpc for regions containing the bubbles (fjet � 0.01)
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Fig. 2.— Left: Exposure corrected, background subtracted, 0.3–3 keV Chandra image, with point sources removed and smoothed with
a � = 1.500 Gaussian. The image shows bright rims surrounding an inner pair of cavities, a prominent elliptical edge surrounding a pair of
cavities at intermediate radii (with the more obvious cavity to the SW and the NE cavity apparently broken into two connected cavities),
and a subtle outer edge associated with a faint pair of outer cavities (with the more obvious cavity to the NE). Right: X-ray image divided
by a 2D fitted beta model and smoothed with a � = 600 Gaussian, shown on the same scale. The outer cavities and edges are more clearly
seen in this residual image, while the inner cavities are not visible due to the larger smoothing scale and saturation of the color scale. The
image also reveals a faint “channel” of decreased surface brightness extending to the north, apparently connected to the NE outer cavity.
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Fig. 3.— Left: Background and exposure corrected 0.4–7.2 keV XMM-Newton image of N5813. Right: Smoothed Chandra image shown
on the same scale, with the intensity scale chosen to better show the faint, outer emission.
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Fig. 5.— The energy history of different traced regions of the simulation studied here. In the left panel we
present the evolution with time of three energy components of the ICM gas that starts before the jets become
active at t = 0 inside an eighth of ball with r = 15 kpc centered at the origin. It is an eighth of a ball as we
simulate one eighth of the space. The green (upper) line represents the internal energy, the blue (middle)
line represents the kinetic energy, and the red (lower) line represents the gravitational energy of this traced
gas. The middle panel shows the energy histories of the torus shown in Fig. 3, and the right panel shows
the energy histories of the torus shown in Fig. 4. All energies are shown relative to their values at t = 0.
The initial internal energies Ein(0) of the traced regions, from the left panel to the right, are 3.1× 1058 erg,
5.5× 1057 erg and 1.1× 1058 erg, respectively. The left and middle panels are cut off at the time when the
traced material starts leaving the grid.

AND	
  



13

Fig. 11.— Time-averaged (between 1 and 3 Gyr) radial profiles of heating and cooling emissivities in units of erg s�1 cm�3 for the jet
cones (left column) and the ambient region (right column). Data marked with open squares represent processes that are cooling for a
certain radial bin. The top panels shows the contributions from radiative cooling, shock heating, and transport plus adiabatic processes.
The last term is further broken down into advection, convection, and adiabatic compression/expansion in the bottom panels. The amount
of mixing heating shown in the top left panel is inferred from the fact that there is rough balance between heating and cooling (see Figure
10).

By estimating the amount of advective energy transfer
through the surfaces of each sector, we find that the en-
ergy primarily flows from the interface between the jet
cones and the ambient region, as opposed to radial inflow
from larger radii. In other words, the ambient region,
though having net cooling, is pumped by flows of energy
from already-heated gas. The gas further gains energy
by adiabatic compression as it flows inward radially as
a part of gentle circulation. Note that for the first two
radial bins in the upper right panel of Figure 11, there
appears to be some net energy losses. This loss of in-
ternal energy could be compensated by mixing with the
non-negligible amount of jet materials within the inner
20 kpc in the ambient region (see the right columns of
Figure 2).
In terms of the overall contributions by di↵erent pro-

cesses within the whole cluster core (i.e., the averaged
heating and cooling luminosities integrated within 100
kpc), we find that within the jet cones, Lc : Lmix :
(Ladv+Lconv+Lad) : Lsh = (�1.52⇥1044) : 9.14⇥1044 :
(�1.37 ⇥ 1045) : 4.08 ⇥ 1044 ' (�0.11) : 0.67 : (�1.0) :
0.30. That is, cooling is dominated by adiabatic expan-
sion instead of radiative cooling; heating from bubble
mixing contributes about twice the amount of heating
from shocks within the cooling radius. For the ambient

region, Lc : (Ladv +Lconv +Lad) : Lsh = (�1.20⇥ 1045) :
9.95 ⇥ 1044 : 2.05 ⇥ 1044 ' (�1.0) : 0.83 : 0.17. In
other words, shock heating slows down radiative cooling
by ⇠ 17%, while the rest of gas internal energy comes
from advection and adiabatic compression. The over-
all energetics suggest that in our simulation, most in-
jected energy from the AGN is stored within the bub-
bles, whereas the energy associated with shocks contain
a minor portion. This is consistent with the energy par-
titions inferred by recent analysis of the Perseus cluster
(Zhuravleva et al. 2016).

4. DISCUSSION

4.1. Turbulent heating

In Section 3.2, we showed that the kinetic energy as-
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To better understand the energetics, we decompose the
velocity fields into the compressible (which traces shocks
and waves) and incompressible (which measures turbu-
lence and g-modes) components (Yang & Reynolds 2015;
Reynolds et al. 2015). The total kinetic energies within
100 kpc for regions containing the bubbles (fjet � 0.01)
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20 kpc in the ambient region (see the right columns of
Figure 2).
In terms of the overall contributions by di↵erent pro-

cesses within the whole cluster core (i.e., the averaged
heating and cooling luminosities integrated within 100
kpc), we find that within the jet cones, Lc : Lmix :
(Ladv+Lconv+Lad) : Lsh = (�1.52⇥1044) : 9.14⇥1044 :
(�1.37 ⇥ 1045) : 4.08 ⇥ 1044 ' (�0.11) : 0.67 : (�1.0) :
0.30. That is, cooling is dominated by adiabatic expan-
sion instead of radiative cooling; heating from bubble
mixing contributes about twice the amount of heating
from shocks within the cooling radius. For the ambient

region, Lc : (Ladv +Lconv +Lad) : Lsh = (�1.20⇥ 1045) :
9.95 ⇥ 1044 : 2.05 ⇥ 1044 ' (�1.0) : 0.83 : 0.17. In
other words, shock heating slows down radiative cooling
by ⇠ 17%, while the rest of gas internal energy comes
from advection and adiabatic compression. The over-
all energetics suggest that in our simulation, most in-
jected energy from the AGN is stored within the bub-
bles, whereas the energy associated with shocks contain
a minor portion. This is consistent with the energy par-
titions inferred by recent analysis of the Perseus cluster
(Zhuravleva et al. 2016).

4. DISCUSSION

4.1. Turbulent heating

In Section 3.2, we showed that the kinetic energy as-
sociated with the tracer particles is always only at the
percent level compared to the internal energy (Figure 6
and 7). The kinetic energy contains contributions not
only from turbulence but also from shocks and waves.
To better understand the energetics, we decompose the
velocity fields into the compressible (which traces shocks
and waves) and incompressible (which measures turbu-
lence and g-modes) components (Yang & Reynolds 2015;
Reynolds et al. 2015). The total kinetic energies within
100 kpc for regions containing the bubbles (fjet � 0.01)
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Fig. 11.— Time-averaged (between 1 and 3 Gyr) radial profiles of heating and cooling emissivities in units of erg s�1 cm�3 for the jet
cones (left column) and the ambient region (right column). Data marked with open squares represent processes that are cooling for a
certain radial bin. The top panels shows the contributions from radiative cooling, shock heating, and transport plus adiabatic processes.
The last term is further broken down into advection, convection, and adiabatic compression/expansion in the bottom panels. The amount
of mixing heating shown in the top left panel is inferred from the fact that there is rough balance between heating and cooling (see Figure
10).
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