Data-driven models of the Milky Way in the Gaia era

Boris Leistedt — @ixkael, www.ixkael.com CCPP, New York University

Happy collaborators

David Hogg (NYU/Flatiron)

Keith Hawkins (Columbia)

Axel Widmark (Stockholm)

Adrian Price-Whelan (Princeton)

Lauren Anderson (Flatiron)

Jo Bovy (Toronto/Flatiron)

The Gaia mission

www.cosmos.esa.int/web/gaia/science-performance

Successor to Hipparcos

Micro-arcsecond global astrometry for 1+ billion stars, complete to 20th mag: correlated positions, proper motions, parallaxes, apparent mags (3 broad photometric bands).

Radial velocities (NIR medium-res $\lambda/\Delta\lambda=11$ k integral-field spectrograph) down to $G_{RVS} \approx 16$ mag

Powerful synergies with other surveys (2MASS, WISE, SDSS, etc)

Many science goals! Solar, Galactic, and extra-Galactic.

Gaia sprints

http://gaia.lol

Full week of sprinting/hacking on concrete achievable projects, in a room full of experts.

- October 2016 in NYC
 July 2017 in MPIA Heidelberg
- June 2018 in NYC

Dozens of papers & new collaborations!

Detailed 3D Milky Way models with Gaia

- stellar density (poisson process) and potential
- dust and total dust extinction
- dynamics: full phase-space
- correlation between phasespace & stellar parameters

Methodological challenges

Correct and full exploitation of Gaia = difficult regime for data analysis and inference

- Huge data set where uncertainties matter (e.g., magnitudes, parallaxes, proper motions)
- Constraining power of the data exceeds quality of existing physical models (e.g., 3D density, etc).
 Worse: using those models can bias the data analysis.

Our goals

- Correct usage of all of the data (with uncertainties, correlations, selection effects, etc) for new discoveries.
- Develop flexible "data-driven" models (e.g., nonparametric) which will inform physical models.
- <u>Gaia DR1 projects</u>:
 - probabilistic models of the color-magnitude diagram
 - calibration of red-clump stars as standard candles
 - improved distance estimates for all Gaia stars
 - detection of unresolved double+triple sequences
- ► <u>Gaia DR2</u>: exciting developments, see final slide.

Gaia Data Release 1

Positions for all sources, but astrometric solution for 2e6 objects in Tycho-2

There is distance information in magnitudes

Absolute magnitude:

$$M_V = m_V - 5\log_{10}\left(\frac{d}{10 \text{ pc}}\right)$$

Parallax & magnitude likelihoods:

$$p(\hat{\varpi}|d, \sigma_{\varpi}) = \mathcal{N}(\hat{\varpi} - 1/d; \sigma_{\varpi}^2)$$
$$p(\hat{\vec{m}}|d, \vec{C}, M, \Sigma_{\hat{\vec{m}}})$$

$$= \mathcal{N}(\hat{\vec{m}} - \vec{m}(d, \vec{C}, M); \Sigma_{\hat{\vec{m}}})$$

How to tap into that information without external data/models? Construct a color-magnitude diagram from the Gaia data alone!

Hierarchical probabilistic models 101

 Mixture model for density of true x's (which are latent parameters)

$$p(x_i | \vec{\alpha}, \vec{\beta}, \vec{\gamma}) = \sum_{b=1}^{B} \alpha_b \mathcal{N}(x_i | \beta_b, \gamma_b^2)$$

• Observed noisy y's:
$$p(y_i|x_i, \sigma_i) = \mathcal{N}(y_i|x_i, \sigma_i^2)$$

Posterior distribution (=deconvolution!)

$$p(\vec{f}, \vec{\beta}, \vec{\gamma} | \{y_i, \sigma_i\}) \propto p(\vec{f}, \vec{\beta}, \vec{\gamma}) \prod_{i=1}^N \sum_{b=1}^B f_b \int \mathrm{d}x_i \mathcal{N}(x_i | \beta_b, \gamma_b^2) \mathcal{N}(y_i | x_i, \sigma_i^2)$$

See <u>http://ixkael.com</u> for tutorials and code for xBayesian hierarchical models, uncertainty shrinkage, selection effects, etc

Gaia DR1 color-magnitude diagram

Leistedt & Hogg, ApJ 2017 (arXiv:1703.08112)

- <u>Data</u>: Gaia TGAS cross-matched with APASS.
- <u>Method</u>: full hierarchical inference via Gibbs sampling.

Anderson, Hogg, Leistedt, Price-Whelan, Bovy, ApJ 2017 (arXiv:1706.05055)

- <u>Data</u>: Gaia TGAS cross-matched with 2MASS.
- <u>Method</u>: extreme deconvolution and empirical Bayes.

Full CMD hierarchical model

Leistedt & Hogg, ApJ 2017 (arXiv:1703.08112)

 Instead of using rigid stellar models, we will use all of the data (at all SNR) to construct a model of the color-magnitude diagram including all magnitude and color information and marginalizing over uncertainties.

• Mixture model:
$$p(M, C) = \sum_{b} \alpha_b \mathcal{N}(\vec{\mu}_b, \Sigma_b)$$

MCMC with Gibbs sampling. 3D dust fixed.
 Bins + distances marginalized over via sampling.
 True color + magnitude analytically marginalized over.

Results: error-deconvolved HRD

Hierarchical uncertainty shrinkage

Hierarchical uncertainty shrinkage

- Natural consequence of hierarchical models: the inferred population distributions act as priors on the internal variables.
- We constructed a color-magnitude diagram directly from the data, constraining the true color + absolute magnitude of each object, resulting in tighter constraints on the distances.

Anderson et al

Evidence for double and triple sequences Preliminary work by Axel Widmark (Stockholm) with D. Hogg

Gaia TGAS+2MASS. Joint fit to CMD with singles & doubles.

Evidence for double and triple sequences

Preliminary work by Axel Widmark (Stockholm) with D. Hogg

Data scatter well explained by unresolved binaries & triples. Next steps: classification and connection to physical models.

Calibration of the red-clump

Hawkins, Leistedt, Body & Hogg, MNRAS 2017 (arXiv:1705.08988)

Hierarchical modeling: Gaussian + outliers,

marginalizing of dust, parallaxes, observed magnitudes.

RC absolute magnitude:

- K band: -1.61 ± 0.01 mag
- G band: 0.44±0.01 mag
- J band: -0.93±0.01 mag
- H band: -1.46±0.01 mag
- W1 band: -1.68±0.02 mag
- W2 band: -1.69±0.02 mag
- W3 band: -1.67±0.02 mag
- 1.01 = 0.02 mag

W4 band: -1.76±0.01 mag Intrinsic dispersion ~0.17±0.03 mag Distance precision ~8%

Gaia DR2 (04/2018)

Gaia DR2 (04/2018)

Gaia DR2 (04/2018)

- G + BR + RP magnitudes
- + 2MASS, WISE, etc
- + parallaxes/proper motions
- = deep dynamic multi-color view of the Galaxy.

Projects we will be ready to do:

- Multicolor color-magnitude diagram
- Improved distance estimates using all the information
- Detailed 3D dust map directly only from Gaia data
- Metallicity map via transfer from RAVE/APOGEE

Multicolor CMD (Gaia TGAS+2MASS, preliminary)

Efficient inference: numerical parallax marginalization, tensorflow SGD

Full Gaia HPM

$oldsymbol{lpha} = (oldsymbol{lpha}_1, \cdots, oldsymbol{lpha}_B)$	All parameters of the mixture model
$\boldsymbol{\alpha}_b = (f_b, \boldsymbol{\xi}_b, \Sigma_b)$	Parameters of the b Gaussian of the mixture
i	Index of the i th star
$\boldsymbol{n}_i = (\alpha_i, \delta_i)$	True/observed angular position
r_i	True distance
$\boldsymbol{v}_i = (v_{x,i}, v_{y,i}, v_{z,i})$	True 3D cartesian velocity
$\hat{oldsymbol{\mu}}_i = (\mu_{lpha,i},\mu_{\delta,i})$	Observed proper motion
$\hat{\varpi}_i$	Observed parallax
$\boldsymbol{E}_i \to E_{m_i}, E_{C_i}$	True magnitude/color extinction at distance r_i
C_i, \hat{C}_i	True and observed color
M_i	True absolute magnitude
\hat{m}_i	Observed apparent magnitude

Infer the distributions from the data (here in 8D) Analytic or numerical marginalization of latent parameters. GMM model: $[v \ n \ r \ C \ M]^T | \alpha \sim \sum_{b=1}^B f_b \ \mathcal{N}^{\text{8D}}(\boldsymbol{\xi}_b; \boldsymbol{\Sigma}_b).$

Technology: stochastic gradients, Tensorflow, etc

Summary

<u>Gaia</u>: exciting data set, but computationally challenging.

We developed inference techniques and data-driven models for fully & correctly exploiting all of the data.

<u>Gaia DR1</u>: high-precision color-magnitude diagrams, binary/triple sequences, improved stellar distances

<u>Gaia DR2</u> (April 2018): 3D reconstruction of stellar density, dust, and velocities.

Codes/experiments public on <u>github.com/ixkael</u>