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The Gaia mission

Successor to Hipparcos 

Micro-arcsecond global astrometry for 1+ billion stars, 
complete to 20th mag: correlated positions, proper motions, 
parallaxes, apparent mags (3 broad photometric bands).  

Radial velocities (NIR medium-res λ/Δλ=11k integral-field 
spectrograph) down to GRVS ≈ 16 mag 

Powerful synergies with other surveys (2MASS, WISE, SDSS, etc) 

Many science goals! Solar, Galactic, and extra-Galactic.

www.cosmos.esa.int/web/gaia/science-performance 

https://www.cosmos.esa.int/web/gaia/science-performance


Gaia sprints

http://gaia.lol   

Full week of sprinting/hacking  
on concrete achievable projects, 
in a room full of experts. 

- October 2016 in NYC  
- July 2017 in MPIA Heidelberg  
- June 2018 in NYC 

Dozens of papers & new collaborations!

http://gaia.lol


Detailed 3D Milky Way models with Gaia

‣ stellar density (poisson 
process) and potential 

‣ dust and total dust extinction 

‣ dynamics: full phase-space 

‣ correlation between phase-
space & stellar parameters



Methodological challenges

Correct and full exploitation of Gaia  
= difficult regime for data analysis and inference 

‣ Huge data set where uncertainties matter  
(e.g., magnitudes, parallaxes, proper motions) 

‣ Constraining power of the data exceeds quality of 
existing physical models (e.g., 3D density, etc).  
Worse: using those models can bias the data analysis.



Our goals
‣ Correct usage of all of the data (with uncertainties, 

correlations, selection effects, etc) for new discoveries. 

‣ Develop flexible “data-driven” models (e.g., non-
parametric) which will inform physical models. 

‣ Gaia DR1 projects:  
- probabilistic models of the color-magnitude diagram  
- calibration of red-clump stars as standard candles 
- improved distance estimates for all Gaia stars  
- detection of unresolved double+triple sequences  

‣ Gaia DR2: exciting developments, see final slide.



Gaia Data Release 1
Positions for all sources, but astrometric solution for 2e6 objects in Tycho-2



There is distance information in magnitudes

MV = mV � 5 log10

� d

10 pc

�

How to tap into that information without external data/models?  
Construct a color-magnitude diagram from the Gaia data alone!

p($̂|d,�$) = N ($̂ � 1/d;�2
$)

Absolute magnitude:

Parallax & magnitude likelihoods:

p( ~̂m|d, ~C,M,⌃ ~̂m)

= N
�
~̂m� ~m(d, ~C,M);⌃ ~̂m

�



Hierarchical probabilistic models 101

‣ Mixture model for density of true x’s 
(which are latent parameters)  
 

‣ Observed noisy y’s: 

‣ Posterior distribution (=deconvolution!)

p(xi|~↵, ~�,~�) =
BX

b=1

↵bN (xi|�b, �
2
b )

p(yi|xi,�i) = N (yi|xi,�
2
i )

See http://ixkael.com for tutorials and code for  
Bayesian hierarchical models, uncertainty shrinkage, selection effects, etc
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Gaia DR1 color-magnitude diagram

Leistedt & Hogg, ApJ 2017  
(arXiv:1703.08112) 

‣ Data: Gaia TGAS cross-matched with APASS. 

‣ Method: full hierarchical inference via Gibbs sampling.  

Anderson, Hogg, Leistedt, Price-Whelan, Bovy, ApJ 2017  
(arXiv:1706.05055) 

‣ Data: Gaia TGAS cross-matched with 2MASS. 

‣ Method: extreme deconvolution and empirical Bayes.



Full CMD hierarchical model

‣ Instead of using rigid stellar models, we will use all of 
the data (at all SNR) to construct a model of the 
color-magnitude diagram including all magnitude and 
color information and marginalizing over uncertainties.  

‣ Mixture model: 

‣ MCMC with Gibbs sampling. 3D dust fixed.  
Bins + distances marginalized over via sampling.  
True color + magnitude analytically marginalized over.

p(M,C) =
X

b

↵bN (~µb,⌃b)

Leistedt & Hogg, ApJ 2017 (arXiv:1703.08112)



Results: error-deconvolved HRD
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Hierarchical uncertainty shrinkage
‣ Natural consequence of hierarchical models: the inferred 

population distributions act as priors on the internal 
variables. 

‣ We constructed a color-magnitude diagram directly from the 
data, constraining the true color + absolute magnitude of 
each object, resulting in tighter constraints on the distances.
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Anderson et al



Evidence for double and triple sequences
Preliminary work by Axel Widmark (Stockholm) with D. Hogg

Gaia TGAS+2MASS. Joint fit to CMD with singles & doubles.



Evidence for double and triple sequences
Preliminary work by Axel Widmark (Stockholm) with D. Hogg

Data scatter well explained by unresolved binaries & triples. 
Next steps: classification and connection to physical models.



Calibration of the red-clump

Hierarchical modeling: Gaussian + outliers,   
marginalizing of dust, parallaxes, observed magnitudes.

0 1 2 3 4
G � Ks

�6

�4

�2

0

2

4

M
K

s

�$̂i/$̂i <0.30

APO1m

Bovy

APOKASC

Laney

m̂i

Mi

L ri

MRC �out

�m̂i

$̂i

�$̂i

R�EB�V

Ai

fout�RC

i = 1, · · · , N

Hawkins, Leistedt, Body & Hogg, MNRAS 2017  
(arXiv:1705.08988)

RC absolute magnitude:  
  K band: −1.61± 0.01 mag  
  G band: 0.44±0.01 mag  
  J band: −0.93±0.01 mag  
  H band: −1.46±0.01 mag  
  W1 band: −1.68±0.02 mag  
  W2 band: −1.69±0.02 mag  
  W3 band: −1.67±0.02 mag 
  W4 band: -1.76±0.01 mag 
Intrinsic dispersion ∼0.17±0.03 mag 
Distance precision ∼8%



Gaia DR2 (04/2018)



Gaia DR2 (04/2018)



Gaia DR2 (04/2018)

G + BR + RP magnitudes  
+ 2MASS, WISE, etc 
+ parallaxes/proper motions  
= deep dynamic multi-color view of the Galaxy.  

Projects we will be ready to do: 

‣ Multicolor color-magnitude diagram 

‣ Improved distance estimates using all the information 

‣ Detailed 3D dust map directly only from Gaia data 

‣ Metallicity map via transfer from RAVE/APOGEE



Multicolor CMD (Gaia TGAS+2MASS, preliminary)

Efficient inference: numerical parallax marginalization, tensorflow SGD

data              m
odel            resam

pled



Full Gaia HPM

The ultimate (Gaussian) stellar inference machine

This is a brief note describing a model of the positions, velocities, proper motions, and colors of stars. If the likelihood
function of those is a multivariate Gaussian (which is the case for Gaia, with strong correlations between parallaxes
and proper motions), one can adopte a Gaussian Mixture model for their distributions (joint or split) and analytically
marginalize over the true velocity, and colors of each star. As a result, one only need to sample the parameters of the
mixture model, as well as the distance and extinction of each star. The e↵ective likelihood function is a simple multivariate
Gaussian, derived below. This opens the possibility to implement this model in fast inference/modelling languages like
Tensorflow, Stan, or Edward.

A summary of the notation is provided in the table below. Apologies if there are typos in the text or equations!
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Our population/distribution model in 8-dimensional space (3D positions and velocities, plus 2D color–magnitude diagram)
is a Gaussian mixture,

[v n r C M ]T
�� ↵ ⇠

BX

b=1

f
b

N 8D
�
⇠
b

;⌃
b

�
. (1)

The priors will be specified later. Typically, one would adopt conjugate priors which greatly simply the inference, i.e. a
Dirichlet prior on the amplitudes {f

b

}, and multivariate Gaussian for each mean ⇠
b

, and Wishard for the covariance ⌃
b

.
The full 5-dimensional likelihood, accounting for any covariance between the measurements, is

[µ̂
↵,i

µ̂
�,i

$̂
i

Ĉ
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are projection matrices, projecting the 3D cartesian vector v in spherical coordinates.  
i

is the covariance
of the measurements, which could be block diagonal.
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GMM model:

Infer the distributions from the data (here in 8D) 
Analytic or numerical marginalization of latent parameters.

Technology: stochastic gradients, Tensorflow, etc



Summary

Gaia: exciting data set, but computationally challenging. 

We developed inference techniques and data-driven 
models for fully & correctly exploiting all of the data. 

Gaia DR1: high-precision color-magnitude diagrams, 
binary/triple sequences, improved stellar distances 

Gaia DR2 (April 2018): 3D reconstruction of stellar 
density, dust, and velocities. 

Codes/experiments public on github.com/ixkael


