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How does the Universe work?
A hierarchy of physical processes...

gravityinitial
conditions

�uid dynamics,
turbulence

radiation

feedbackmicrophysics ...
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How does the Universe work?
I 0th order: gravity often is most important

I Sometimes gravity wins on even the smallest scales...

I 1st order: is often �uid dynamics
I study of fundamental physical processes (How does the Universe work?)

I structure formation
I turbulence
I di�erent regimes where qualitative behavior changes
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magneto-gravo-turbulence in star formation

* (Mocz et al., 2017), (Hull, Mocz, Burkhart, McKee et al., 2017)



Overview
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Star formation background

I competition between turbulence,
self-gravity & B-�eld

I basic theory predicts cores
collapse and form hourglass
shaped magnetic �elds

I sub- or super-Alfvénic
turbulence?

NGC 1333
IRAS4A
(Girart, Rao, Marrone 2006)
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Origin of magnetic �eld structure
I inherit strong �eld from large-scale medium
I amplify weak �eld via turbulence

(Stone+1998)

I magnetic topology problem(McKee+1993): how does the
magnetic �eld topology evolve as the ISM forms
molecular clouds and cores contract to form stars?
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How does contraction of cores happen?

B ∝ ρα

(Tritsis+2015)
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Is core-formation self-similar? (Li+2015)

I self-similar scaling 100→ 0.1 pc (SMA)
I dynamically important B-�elds
I anisotropic contraction
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Or not! Zeeman obs. of B-�eld in clouds

(Crutcher+2012)

I B ∝ ρ0.67, weak-�eld preferred
I Zeeman measurements are the gold standard for B-�eld
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What about smaller scales? (Hull, PM+2016)

CARMA (0.1 pc) ⇒ ALMA (0.01 pc)
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I new Ser-emb 8 Type 0 protostar ALMA observation
I pinches, �laments, clumps, chaotic!
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What can simulations teach us?: Setup
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I turbulent, magnetized,
self-gravitating ISM cloud
(L0 ∼ 5 pc )

I isothermal
I Ms = vrms

cs
= 10

I αvir = 5v2
rms(L/2)/(3GM0) = 1/2

I MA = 〈|v|〉/〈|
√
B2/4πρ|〉 =

0.35, 1.2, 3.5, 35
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Simulations of star formation in turbulent ISM

decreasing magnetic field strength

Core (JCMT)

Protostar (ALMA)

Cloud (optical
polarimetry)



B-ρ scaling
Weak-field
MA,mean−field = 3.5
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Density-averaged radial pro�les
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Conclusions - I

Weak-field
I B ∝ ρ2/3

I isotropic
I turbulent morphology
I not self-similar
I β = 1 @collapse
outer-scale

Strong-field
I B ∝ ρ1/2

I anisotropic
I hourglass morphology
I self-similar
I β = 1
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Conclusions - II

I MA ∼ 1 a good �ducial value for star formation
I Star formation may occur in bothMA & 1 andMA . 1
environments, very di�erent consequences!

I turbulent vs. hourglass morphology
I di�erent central magnetic �eld strengths
I higher B leads to more massive stars, less fragmentation
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B-�eld as function of scale
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I despite core properties
being similar, mean-�eld
direction as function of
length-scale strongly
depends on the mean-�eld
MA,0

I future ALMA observations
of young proto-stellar
systems can constrain
MA,0
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Turbulent reconnection di�usion

(Lazarian & Vishniac, 1999)

I evidence for
turbulent-reconnection seen in
our simulations

I Mass-to-�ux (µΦ,0) in cores
evolves during collapse as:

I µΦ,0 = 80→ 12.7
I µΦ,0 = 8→ 16.5
I µΦ,0 = 2.7→ 12.1
I µΦ,0 = 0.8→ 5.8
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Density- vs Volume- averaged B-�elds
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(Li, McKee, Klein, 2015)

I Crutcher+ (2012) Zeeman
measurements recover
density-averaged B-�elds

I B–ρ scaling can be steeper
with density- as opposed to
volume-average

I Li, McKee, Klein (2015) �nd
mass-to-�ux is also a�ected
by type of averaging

I demonstrates the importance
of modeling all observational
e�ects for interpretation of
data

23 / 25



Self-gravitating turbulent box properties
B −∇ρ
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I Histogram of Relative Orientations (Soler+2013)

I B-�eld & velocities tend to align, especially at low density
I ∇ ·B = 0, shocks, prevent perfect alignment
I B-�elds aligned with density gradient at high densities
I transition occurs at critical density ρcrit (Chen,King,Li,2016)
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Large-scale EE/BB modes
I Planck dust polarization maps of interstellar turbulence
show EE/BB=2 (Caldwell, Hirata, Kamionkowski 2016)

I analytic theory predicts EE/BB=1 for turbulence
I My simulations con�rm analytic theory EE/BB=1 for
super-Alfvenic turbulence

I EE/BB=2 might indicate stirring-scale or strong B-�elds
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