R-process nucleosynthesis in jet-driven supernovae

Philipp Mösta

Einstein fellow @ UC Berkeley pmoesta@berkeley.edu

Einstein fellows symposium, Oct 12, 2017

New era of transient science

- Current (PTF, DeCAM, ASAS-SN) and upcoming wide-field time domain astronomy (ZTF, LSST, ...) -> wealth of data
- adv LIGO / gravitational waves detected
- Computational tools at dawn of new exascale era

Transformative years ahead for our understanding of these events

Image: LSST

Astrophysics of core-collapse supernovae

M82/Chandra/NASA Galaxy evolution/feedback

Birth sites of black holes / neutron stars

Heavy element nucleosynthesis

Hypernovae & GRBs

- 11 long GRB core-collapse supernova associations.
- All GRB-SNe are stripped envelope, show outflows v~0.1c
- But not all stripped-envelope supernovae come with GRBs
- Trace low metallicity and low redshift

Superluminous supernovae

Some events: stripped envelope no interaction E_{lum} ~ 10⁴⁵ erg E_{rad} up to 10⁵² erg

Gal-Yam+12

Superluminous / hyperenergetic supernovae SLSN Ic SN Ic-bl IGRBs

Common engine? Magnetar?

Superluminous / hyperenergetic supernovae **SLSN** Ic SN Ic-bl **IGRBs Common engine? Magnetar**? 7 **FRBs**?

Nuclear equation of state stiffens at nuclear density

Inner core (~0.5 M_{\odot}) -> protoneutron star + shockwave

Nuclear equation of state stiffens at nuclear density

Inner core (~0.5 M_{\odot}) -> protoneutron star + shockwave

Outer core accretes onto shock & protoneutron star with O(1) M_{\odot} /s

Shock stalls at ~ 100 km

Nuclear equation of state stiffens at nuclear density

Inner core (~0.5 M_{\odot}) -> protoneutron star + shockwave

Core-collapse supernova problem: How to revive the shockwave?

Inner core (~0.5 M_{\odot}) -> protoneutron star + shockwave

Engine formation?

3D Volume Visualization of

Entropy

Roberts+16

Protomagnetar powered explosions

Rapid Rotation + B-field amplification

Results in ms-period proto-magnetar

2D: Energetic bipolar explosions Energy in rotation up to 10⁵² erg

Magneto-Hydrodynamics

Gas/plasma dynamics

Magneto-Hydrodynamics

General Relativity

Gravity

All four forces!

All four forces!

Additional Complication: Core-Collapse Supernovae are 3D

- rotation
- fluid and MHD instabilities, multi-D structure, spatial scales

Need 21st century tools:

- cutting edge numerical algorithms
- sophisticated open-source software infrastructure
- peta/exa scale computers

http://einsteintoolkit.org

3D explosions dynamics very different!

PM+ 14

24

MHD Kink Instability

- B-field near proto-NS: $B_{tor} >> B_{z}$
- Unstable to MHD screw-pinch kink instability.
- Similar to situation in Tokamak fusion reactors!

Credit: Moser & Bellan, Caltech

Braithwaite+ '06

Sarff+13

3D Volume Visualization of

t = -3.00 ms

Implications for long Gamma-Ray Bursts

dual-lobe 'slow' explosion

Continued accretion -> Black hole engine possible!

PM+ 17 (in prep.)

R-process nucleosynthesis in magnetar-driven explosions

Neutron-rich nucleosynthesis in supernovae Creating the heaviest elements

Jet-driven explosions proposed as site for rprocess

- Low electron fraction
- Medium entropy
- Low density
- High temperature

Sneden+ 08

R-process - Basics

PM, Roberts, Halevi+ 17 (in prep)
Halevi, PM+ 17 (in prep)

R-process in jet-driven supernovae

 $B = 10^{13} G$

Halevi, PM 17 (in prep)

R-process in jet-driven supernovae

 $B = 10^{12} G / octant$

PM, Roberts, Halevi+ 17 (in prep)

Summary

New (hyperenergetic/superluminous) transients challenge our engine models

Need detailed massively parallel 3D GRMHD simulations to interpret observational data

Robust r-process elements only from iron cores that were magnetized strongly precollapse

High-performance computing key to solving these puzzles

Thank you!