The Delay Time Distribution of Tidal Disruption Events

Brian Metzger (Columbia)

> Aleksey Generozov (Columbia)

Eugene Vasiliev (Cambridge/Oxford)

Tidal Disruption Event (TDE) Rates

- TDE rates set by passage of stars into **loss cone**
- Loss cone often described in terms of angular momentum space
 - $J_{LC}^2 \approx 2 \ G \ M_{BH} r_t$
- TDE rate set by loss cone refilling mechanism: two-body relaxation ubiquitous
 - Theoretical rate in normal galaxies ~10⁻⁴/yr (NCS & Metzger 16)

(Freitag & Benz 02)

Unusual Host Galaxy Preferences

- Many TDEs in rare post-starburst/ E+A galaxies (Arcavi+14, French +16, 17, Law-Smith+17, Graur+17)
- Dynamical explanations:
 - Binary SMBHs; chaotic 3-body scatterings (Arcavi+14)
 - Radial anisotropies: low angular momentum systems (NCS+17)
 - Central overdensities; short relaxation times (NCS & Metzger 16)
- Discriminant: delay time distribution (DTD; NCS+17)

(French+ 16)

SMBH Binaries?

- Nascent SMBH binaries see increase in TDE rate:
 - Kozai effect (Ivanov+05)
 - Chaotic 3-body scatterings (Chen+11)
- Enhancement huge (Γ ~10⁻¹/yr) but shortlived (<10⁶ yr)
 - Occurs before final parsec problem
 - Unique lightcurves? (Coughlin+17)
- Possibly disfavored by:
 - Total rate fraction ~3-25% (Wegg & Bode 11)
 - Host mass distribution
 - Fine-tuned timescales

(Prieto+16)

SMBH Binary Cumulative Distribution

Radial Orbit Anisotropies?

- Another possibility: anisotropic velocities with radial bias
- Consider constant anisotropy $\beta = 1 K_{\perp}/2K_r$
 - + $\beta < \beta_{ROI} \sim 0.6$ to avoid radial orbit instability
- Solve 1D Fokker-Planck equation in angular momentum space:

$$\frac{\partial f}{\partial \tau} = \frac{1}{4j} \frac{\partial}{\partial j} \left(j \frac{\partial f}{\partial j} \right)$$

• TDE rate $\Gamma \propto t^{-\beta}$ in an isotropizing cusp

Anisotropic Delay Time Distributions

(NCS+17)

Stellar Overdensities?

- Suggestive evidence: color gradients in E+As (Pracy+13)
- Overdense nuclei $\rho(r) = \rho_{infl}(r/r_{infl})^{-\gamma}$ can have short two-body relaxation times if overconcentrated or ultrasteep
- Overconcentrated (r_{infl} low):
 - High, slowly evolving TDE rate
- Ultrasteep (γ large):
 - + If γ >7/4, profile flattens with time (Bahcall & Wolf 76)
 - + If γ >9/4, TDE rate diverges inward
 - Transition point $r_{BW} \propto t^{1/(\gamma-3/2)}$
 - + TDE rate $\Gamma \propto t^{-(4\gamma-9)/(2\gamma-3)} / \ln(t)$

Birth of a Bahcall-Wolf Cusp

(NCS+17)

Overdense Delay Time Distributions

(NCS+17)

NGC 3156: A Nearby E+A

NGC 3156: Modeling

(NCS & van Velzen 16)

- Optimal target: 22 Mpc, $M_{BH} = 3 \times 10^6 M_{\odot}$
- We fit an I(R) model to archival HST observations
 - + NGC 3156 major outlier in central profile: I(R) ∝ R^{-1.2}
- TDE rate Γ~1 x10⁻³/yr!
 - Will test further with upcoming HST observations

Conclusions

- Several dynamical explanations for the post-starburst preference
 - SMBHBs unlikely
 - + Radial anisotropies possible; DTD requires high $\beta \sim \beta_{ROI}$
 - Stellar overdensities possible; DTD requires very high γ
- Anisotropy and overdensity hypotheses potentially testable with resolved observations of nearby post-starbursts
- Post-starburst preference important future tool for TDE surveys, validation
- Delay time distributions powerful future tool model selection and parameter extraction

Realistic TDE Rates

- Theoretical rates calculated semiempirically (Magorrian & Tremaine 99, Wang & Merritt 04, NCS & Metzger 16):
 - Take sample of nearby galaxies
 - Deproject I(R) -> ρ(r)
 [assumes sphericity]
 - Invert ρ(r) -> f(ε)
 [assumes isotropy]
 - Compute diffusion coefficients
 <ΔJ²(ε)>, loss cone flux 𝒢(ε)
 [assumes IMF]
- $\Gamma_{obs} < \Gamma_{theory} \sim few \times 10^{-4}/gal/yr$?
 - But see Auchettl talk, Saxton talk, Jonker talk, van Velzen 2017...

(Lauer+05)

SMBHB TDE Rates

Observed TDE Hosts

(Wevers+17)

N-Body Simulations

(Arca-Sedda & Capuzzo-Dolcetta 17)

Nuclear Triaxiality?

(Merritt+13)

Eccentric Stellar Disks?

Orbit Leads Disk:

Orbit Lags Behind Disk:

(Madigan+17)