Probing the Spacetime Around Sgr A* with Radio Pulsars

Eric Pfahl (CfA)

with Avi Loeb (CfA)

Chandra Fellows Symposium October 8, 2003 Massive Stars Orbiting Sgr A*

- Near-IR observations have revealed roughly two dozen stars within $\simeq 0.175$ of Sgr A*.
- Dynamics \Rightarrow black hole of mass $(3-4) \times 10^6 M_{\odot}$.
- Spectral evidence suggests that many of the stars have masses of 10–20 $M_{\odot}.$

Massive stars leave neutron-star remnants . . .

Radio pulsars!

Number of Pulsars

- Steady-state population of ${\sim}10{-}100$ massive stars with orbital periods of ${\lesssim}100\,{\rm yr}.$
- Stellar lifetimes of $\sim 10^7$ yr \Rightarrow NS birthrate of 10^{-6} – 10^{-5} yr⁻¹.
- Characteristic pulsar lifetime of $(1-5) \times 10^8$ yr $\Rightarrow \sim 100-5000$ active radio pulsars.

What is the detectable fraction?

Pulsar Statistics

Take the steady-state assumption further, and use the statistics of the Galactic pulsar population:

- 400-MHz luminosity function: $p(L_{400}) \propto L_{400}^{-2}$.
- Luminosity to flux: $L_{\nu} \simeq D^2 S_{\nu}$.
- Spectrum: $S_{\nu} \propto \nu^{-\alpha}$.
- Spectral slopes: $p(\alpha) \propto \begin{cases} \exp[-(\alpha \langle \alpha \rangle)^2/2\sigma_{\alpha}] & \alpha > 0 \\ 0 & \alpha < 0 \end{cases}$

(
$$\langle lpha
angle \simeq$$
 1.7, $\sigma_{lpha} \simeq$ 0.8)

Pulsar Detection: High-Frequency Surveys

Extreme radio-wave scattering:

- Angular broadening of $\simeq 1'' (\nu/\text{GHz})^{-2}$ for Sgr A*.
- Temporal smearing of ~300 s($\nu/{\rm GHz}$)⁻⁴ vs pulse period of $P_p \sim 1$ s.
- Optimum observing frequency: $\nu' \simeq 7 \,\text{GHz} \,(\alpha^{1/2} P_p)^{-1/4}$ (Cordes & Lazio 1997).
- Pulsed flux sensitivity (e.g., GBT):

$$S_{\min} \simeq 20-40 \,\mu \text{Jy} \left[\frac{\epsilon}{0.05} \cdot \frac{1 \,\text{GHz}}{\Delta \nu} \cdot \frac{1 \,\text{hr}}{t_{\text{int}}} \right]^{1/2}$$

Detectable Fraction

S _{min}	u	Fdet
(μJy)	(GHz)	(%)
25	10	2.4
25	15	2.0
25	20	1.8
50	10	1.2
50	15	1.0
50	20	0.9

- Detectable fraction $\sim 1\%$.
- Not much variation with ν .

Several tens of pulsars may orbit Sgr A^{*} with $P_{\text{orb}} \lesssim 100$ yr and $S > S_{\text{min}}$. The beaming fraction is $\simeq 0.2$, and so perhaps a few pulsars will be detectable with current telescopes.

Pulsar Timing

Analysis of pulse arrival times reveals the dynamics of a pulsar orbiting Sgr A^* .

- Arrival-time precisions are $\delta t \sim (10^{-3} 10^{-2})P_p$, or $\sim 1 10$ ms.
- The RMS timing precision is then $\sim \delta t / \sqrt{N}$, which is $\lesssim 1 \text{ ms}$ for $N \sim 100$.
- Pulsar spin-down model: $\phi = \nu_p T + \dot{\nu}_p T^2/2 + \dots$
- Time delays: $t t_0 = T + \sum_i \Delta_i$.

Relativistic Gravity

Largest post-Keplerian timing residuals:

(1) Einstein(2) First-order Shapiro

- (3) Frame-Dragging
- (4) Second-order Shapiro

Other Issues

- Probe the accretion flow onto the black hole via dispersionmeasure variations.
- Dynamics of the Sgr A* cluster. Gravitational perturbations may be evident in the timing residuals.
- Radio imaging and astrometry. It may be possible to measure the precession of the orbit and determine the spin of the black hole in 3-D.