Basic ingredients for the biggest blasts in the cosmos

Enrico Stephan Rosswog (Leicester)

Chandra Fellows: October 2003

Are there distinctive subclasses of γ -ray bursts?

 Diverse. Possibly more than one model Short hard bursts (τ ~ 0.1 s) Long complex bursts (τ ~ 20 s)

What is the trigger?

The duration of the burst is determined by the viscous timescale of the accreting gas

The duration of the burst is given by the fall-back time of the gas.

Merging Neutron Stars

Scenarios resulting from binary disruption

[Note: $\tau_{dyn} \approx 10^{-3}$ sec]

Stage 1

Rapid evolution driven by bar-mode instabilities, gravitational waves, etc.

Stage 2

Slower evolution of surviving axisymmetric torus (mass M_t). There are two options:

B-field unimportant

B-field important

B amplifies to **B**_{max}

Relativistic magnetized wind $\propto B_{\text{max}}^2$

 $\sim 0.1 M_{\rm bh} c^2$

Mochkovitch et al. 1993; Ruffert et al. 1997; Popham et al. 1999

Questions

•What is the maximum mass of the remnant torus which is immune to very violent instabilities?

Lee & Ramirez-Ruiz (2002)

•What is B_{max} ? (10¹⁴-10¹⁵ G required)

Note: it only takes a residual torus of 10^{-3} M_{\odot} to confine a field of 10^{15} G.

 $M_{\rm t}$

 $B \sim 10^{15} \text{G} \sim 1\% B_{V}$

•How much entrainment occurs?

Rosswog (2003)

•Calculations of the last inspiral stages and the final coalescence. The equations of hydrodynamics are solved using SPH method.

•A realistic equation of state for hot, dense nuclear matter (*Shen et al. 1998*) smoothly extended to the low density regime (stiffer than *Lattimer-Swesty*).

Remnant Properties

v+v -> e++e

•3D, high resolution calculations (~10⁶ SPH particles)

•Temperatures of several MeV and densities ~ 10^{12} g cm $^{-3} \rightarrow v$ are emitted copiously

$\eta \sim \frac{\text{energy deposited}}{\text{baryon rest mass}}$

•Shown are the values of log η in the x-z plane above the merged remnant

$$L_{\eta \ge 1} \approx 10^{48} \, erg \, s^{-1}$$

Hydrodynamic collimation

•The outflow that derives from the debris will have enough pressure to collimate the relativistic fireball that it surrounds (Levinson & Eichler 2000; Rosswog & Ramirez-Ruiz 2003)

 \rightarrow satisfy the apparent isotropic energy of short bursts at $z\approx 1$ (Panaitescu et al. 2001)

MHD Extraction

•Equipartition field strengths: P_{mag}=P_{gas}

•Timescale for "winding-up" of the field lines via differential rotation.

Convective motion, dynamos & super-pulsars

•The neutrino emission establishes a negative entropy and lepton number gradient → vigorous convection!

•Newly born protoneutron star (Epstein 1979; Burrows & Lattimer 1988)

•Velocity field on the interior of the central object \rightarrow convective shells

 $l_{\rm conv} \sim 1 \ \rm km$

 $v_{\rm conv} \sim 10^8 {\rm ~cm~s^{-1}}$

Convective motion, dynamos & super-pulsars

•If we assume neutrinos to be the dominant source of viscosity, the related viscous damping time scale for the convective motion is:

 $\tau_{\rm c} \sim l_{\rm c}^2/\upsilon_{\rm v} \sim 60 \ {\rm sec} \ \approx 10^5 \tau_{\rm dyn}$

•An effective large scale helical dynamo can be supported for $R_0 \le 1$: (Duncan & Thompson 1992; 1993)

$$R_0 pprox au_{
m rot} / au_{
m conv} \sim 0.3$$

•Such a convective dynamo amplifies seed magnetic fields exponentially: (Nordlund et al. 1992)

$$\tau_{\rm eq} \sim \tau \, \operatorname{In} \, (B_{\rm eq}/B_0) \sim 40 \, \mathrm{ms}$$

•Using typical numbers we estimated the magnetic dipole luminosity to be:

$$L_{md} \sim 10^{53} \, erg \, s^{-1}$$

and the spin down timescale:

 $\tau_{sd} \sim 0.3 \ s$

Summary

