Can we determine the grain composition of the Interstellar Medium with Chandra and Astro E2 ?

> Julia Lee (Harvard / MIT) with Bruce Ravel (NRL)

Motivation for Dust Studies

Gets in the way of everything

Vital to our understanding of the universe
dust a primary respository of the ISM
chemical evolution of stars, planets, life
`We are stardust ' - Joni Mitchell, Woodstock (Ladies of the Canyon) - 1970

Multiwavelength studies of dust

- X-rays : can probe <u>solid state</u> of molecule; sensitive to ALL atoms in both gas and solid phase (as long as grains are ~0.1-1µm)
- IR : can directly probe vibrational modes, but limited to PAHs, graphites and certain silicates (~2.5–25 μm region). Cannot easily speciate the grain composition
- UV : dust inferred from the depletion factor (amount expected : measured)
- Optical : dust inferred from redding/extinction, polarization
- Radio : probe gas phase; 21cm, CO, etc.

Reviews, etc from some of the experts

- Dust and Astrophysics :
 - Bruce Draine : Annual Reviews of Astronomy & Astrophysics & references therein
 - Endrik Krügel : `The Physics of Interstellar Dust'
 - Lyman Spitzer : `Physical Processes in the ISM'
 - D C B Whittet : `Dust in the Galactic Environment'
 - Also, ApJ papers by Woo et al. 1995, 97; Forrey et al. 1998
- XAFS Theory & Practice
 - Koningsberger & Prins (1988)
 - Kruegel (2003)
 - B. Ravel & M. Newville
 - Rehr & Albers (2000)
 - J. Stöhr (1996)

ISM Studies with Chandra

XRB: Cyg X2: Juett et al. 2004

AGN: MCG-6-30-15 : Lee et al., in prep.

• also Ming Feng Gu : new calculation

Detections of X-ray Absorption Fine Structure

GRS 1915+105 : Lee et al. 2002a $.5 \times 10^{-3}$ Flux $(ph/cm^2/s/\hat{A})$ -4 10⁻³ 1.5 Mg K Edge MEG 1st order 5×10^{-4} 9 9.2 9.4 9.6 9.8 Flux (ph/cm²/s/Å) 0.03 0.04 XAFS ? Si K Edge HEG 1st order 6.8 6.4 6.6 7 7.2S K Edge (h ö 0.13 Flux HEG 1st order S XV He a 02 4.8 4.9 5 5.15.25.3Wavelength (Å)

EXAFS: ocal atomic structure XAFS XANES:

valence of absorber density of states of abs.

- interstellar grain
 composition
- solid state astrophysics ?!

The theory behind measuring X-ray Absorption Fine Structure (XAFS) to determine molecular composition

The photoelectric effect : X-ray photon absorbed by an electron in a tightly bound quantum core level (e.g. 1s or 2p)

The theory behind measuring X-ray Absorption Fine Structure (XAFS) to determine molecular composition

- The photoelectric effect : X-ray photon absorbed by an electron in a tightly bound quantum core level (e.g. 1s or 2p)
- Isolated Atom: Bound free process --> edge step
- Isolated Atom : Bound bound process --> inner shell resonance absorption lines (e.g. MCG-6-30-15: Oxygen V, VI KLL : Lee et al. 2001; IRAS 13349 : 2p-3d M-shell Fe : Sako et al. 2000, NGC 3783 -- Kaspi et al. 2002, Netzer et al. 2003 & references therein)
- Molecule : bound-bound process --> XAFS

Heuristic Picture of EXAFS

(1) Deep core electron is excited into a state above Fermi energy (2) Single Scattering Approximation :
 The photoelectron propagates as a spherical wave & interacts with neighboring atoms -> backscattered wave

XAFS Theory Bound-bound case for molecules

The amplitude of the back-scattered photo-electron at the absorbing atom will vary with energy --> oscillations in $\mu(E) --> XAFS$

The practice behind measuring X-ray Absorption Fine Structure (XAFS) to determine molecular composition

ISM Grain Candidates

UV, IR, & meteorite studies indicate compositions :

ice : H_2O

graphite : C

polyaromatic hydrocarbons : PAHs

silicates : SiO₂, FeSiO₃, FeSiO₄, MgSiO₃, Mg₂SiO₄

iron species : Fe, FeO, Fe_2O_3 , Fe_3O_4

Data from BNL National Synchrotron Light Source beamlin

Can we determine the grain composition of the Interstellar Medium with Chandra and Astro E2 ?

YES but NOISE a serious impediment Difficult in the soft X-rays; other abs. lines Easier with Astro E2 XRS, *if* iron-based dust ** definately will be able to separate gas from dust **

Space-based measurements should be complemented with empirical XAFS data taken at synchrotron beamlines to determine exact chemical state of the astrophysical dust

Recent measurements of soft X-ray XAFS at ALS (Sept 04)

FUTURE MISSIONS : area + spectral resolution