Optical studies of an ultraluminous X-ray source: NGC1313 X-2

Jifeng Liu
Harvard-Smithsonian Center for Astrophysics

in collaboration with
Joel Bregman, Jon Miller, Philip Kaaret
OUTLINE

• background: ultraluminous X-ray sources
• a case study: NGC1313 X2
 • X-ray observations
 • optical observations
 • astrometry
 • photometry
 • color-magnitude diagram
 • spectral energy distribution
• discussion
 • IMBH formation
 • period?
 • radial velocity
ULTRALUMINOUS X-RAY SOURCES
ULTRALUMINOUS X-RAY SOURCES

• ULXs are non-nuclear X-ray point sources with $L_x > 2 \times 10^{39}$ erg/s, i.e., more luminous than the Eddington luminosity for stellar mass black holes, and could be intermediate mass black holes of 30×10^5 Ms
ULTRALUMINOUS X-RAY SOURCES

- ULXs are non-nuclear X-ray point sources with $L_x > 2 \times 10^{39}$ erg/s, i.e., more luminous than the Eddington luminosity for stellar mass black holes, and could be intermediate mass black holes of $30 - 10^5$ Ms
- key questions
ULTRALUMINOUS X-RAY SOURCES

• ULXs are non-nuclear X-ray point sources with \(L_x > 2 \times 10^{39} \text{ erg/s} \), i.e., more luminous than the Eddington luminosity for stellar mass black holes, and could be intermediate mass black holes of 30 - 10^5 M_\odot

• key questions
 • are they stellar mass black holes or IMBHs
ULTRALUMINOUS X-RAY SOURCES

• ULXs are non-nuclear X-ray point sources with $L_x > 2 \times 10^{39}$ erg/s, i.e., more luminous than the Eddington luminosity for stellar mass black holes, and could be intermediate mass black holes of $30 - 10^5$ Ms

• key questions
 • are they stellar mass black holes or IMBHs
 • how do they form if IMBH?
ULTRALUMINOUS X-RAY SOURCES

• ULXs are non-nuclear X-ray point sources with $L_x > 2 \times 10^{39}$ erg/s, i.e., more luminous than the Eddington luminosity for stellar mass black holes, and could be intermediate mass black holes of $30 - 10^5$ Ms

• key questions
 • are they stellar mass black holes or IMBHs
 • how do they form if IMBH?
 • how do they radiate if stellar mass black holes?
ULXs in NGC 1313

- A barred SB(s)d galaxy at 3.7Mpc
- Low metallicity of 0.1-0.2 Zs
- Irregular SW satellite regions - a tidally disrupted companion galaxy? a collision of huge HI clouds with the disk?
- ULXs: X1, X2, and SN1978K
ULXs in NGC1313

- a barred SB(s)d galaxy at 3.7Mpc
- low metallicity of 0.1-0.2 Zs
- irregular SW satellite regions - a tidally disrupted companion galaxy? a collision of huge HI clouds with the disk?
- ULXs: X1, X2, and SN1978K
X-ray observations: light curves

Zampieri et al. 2004
X-RAY OBSERVATIONS: LIGHT CURVES

Feng & Kaaret 2006
X-ray observations: spectroscopy

- light curves
 - observed since EINSTEIN
 - variability on time scales from days to months to years
 - maximum L_x up to 3×10^{40} erg/s

- X-ray spectra
 - can be fitted with a power-law ($\Gamma \sim 2.3$, 63%) plus a cool accretion disk (~ 160 eV, 37%) suggestive of a IMBH of $\sim 10^3$ Ms (Miller et al. 2003)
 - but the cool accretion disk component is dominated by the power-law component, and the fit is not unique
 - it can also be fitted with a power-law ($\Gamma \sim 2.9$, 64%) plus a hot disk (~ 2.7 keV, 36%). (Stobbart et al. 2006)
OPTICAL OBSERVATIONS

ESO 3.6m R

Zampieri et al. 2004

counterpart: C (later resolved to C1 and C2)
Table 1. The HST ACS observations for NGC1313 X-2

<table>
<thead>
<tr>
<th>ID</th>
<th>Filter</th>
<th>ExpT</th>
<th>DATE</th>
<th>ACor</th>
<th>Z_{VEGA}</th>
<th>Z_{ST}</th>
<th>VEGAmag</th>
</tr>
</thead>
<tbody>
<tr>
<td>j8ola2010</td>
<td>HRC/F330W</td>
<td>2760</td>
<td>2003-11-22</td>
<td>0.420</td>
<td>22.904</td>
<td>23.026</td>
<td>22.037±0.021</td>
</tr>
<tr>
<td>j8ol02040</td>
<td>WFC/F435W</td>
<td>2520</td>
<td>2003-11-22</td>
<td>0.277</td>
<td>25.779</td>
<td>25.157</td>
<td>23.470±0.017</td>
</tr>
<tr>
<td>j8ol02030</td>
<td>WFC/F555W</td>
<td>1160</td>
<td>2003-11-22</td>
<td>0.249</td>
<td>25.724</td>
<td>25.672</td>
<td>23.625±0.026</td>
</tr>
<tr>
<td>j8ol02010</td>
<td>WFC/F814W</td>
<td>1160</td>
<td>2003-11-22</td>
<td>0.292</td>
<td>25.501</td>
<td>26.776</td>
<td>23.640±0.043</td>
</tr>
<tr>
<td>j8ol06010</td>
<td>WFC/F555W</td>
<td>2240</td>
<td>2004-02-22</td>
<td>0.249</td>
<td>25.501</td>
<td>26.776</td>
<td>23.472±0.021</td>
</tr>
</tbody>
</table>

Note. — The columns are (1) exposure ID, (2) filter, (3) total exposure in seconds, (4) observation date, (5) aperture correction in magnitude, (6) zeropoint for VEGAmag, (7) zeropoint for STmag, and (8) VEGAmag for the counterpart.
OPTICAL OBSERVATIONS: ASTROMETRY
OPTICAL OBSERVATIONS: ASTROMETRY

acis3550: reconstructed

F555W 2003
OPTICAL OBSERVATIONS: ASTROMETRY

x3: foreground star
x4: background AGN
OPTICAL OBSERVATIONS: ASTROMETRY

ACS/WFC F555W

X4

ULX

CR

C1

C2

ACS/WFC F555W
OPTICAL OBSERVATIONS: ASTROMETRY

Counterpart: C1
OPTICAL OBSERVATIONS: ENVIRONMENTS
OPTICAL OBSERVATIONS: PHOTOMETRY

- IRAF/DAOPHOT was used
- VEGAmag and STMAG were computed

Table 1. The HST ACS observations for NGC1313 X-2

<table>
<thead>
<tr>
<th>ID</th>
<th>Filter</th>
<th>ExpT</th>
<th>DATE</th>
<th>ACor</th>
<th>Z_{VEGA}</th>
<th>Z_{ST}</th>
<th>VEGAmag</th>
</tr>
</thead>
<tbody>
<tr>
<td>j8ola2010</td>
<td>HRC/F330W</td>
<td>2760</td>
<td>2003-11-22</td>
<td>0.420</td>
<td>22.904</td>
<td>23.026</td>
<td>22.037±0.021</td>
</tr>
<tr>
<td>j8ol02040</td>
<td>WFC/F435W</td>
<td>2520</td>
<td>2003-11-22</td>
<td>0.277</td>
<td>25.779</td>
<td>25.157</td>
<td>23.470±0.017</td>
</tr>
<tr>
<td>j8ol02030</td>
<td>WFC/F555W</td>
<td>1160</td>
<td>2003-11-22</td>
<td>0.249</td>
<td>25.724</td>
<td>25.672</td>
<td>23.625±0.026</td>
</tr>
<tr>
<td>j8ol02010</td>
<td>WFC/F814W</td>
<td>1160</td>
<td>2003-11-22</td>
<td>0.292</td>
<td>25.501</td>
<td>26.776</td>
<td>23.640±0.043</td>
</tr>
<tr>
<td>j8ol06010</td>
<td>WFC/F555W</td>
<td>2240</td>
<td>2004-02-22</td>
<td>0.249</td>
<td>25.501</td>
<td>26.776</td>
<td>23.472±0.021</td>
</tr>
</tbody>
</table>

Note. — The columns are (1) exposure ID, (2) filter, (3) total exposure in seconds, (4) observation date, (5) aperture correction in magnitude, (6) zeropoint for VEGAmag, (7) zeropoint for STmag, and (8) VEGAmag for the counterpart.
only 12 out of 400 stars are variable above 3 sigma

counterpart: $\Delta F_{555W} = 0.153\pm0.047$ mag
COLOR-MAGNITUDE DIAGRAMS

- use HST ACS/WFC VEGAmag photometric system for data and isochrones
- Z=0.2Zs isochrones (Leo Girardi), E(B-V)=0.11
- (a) \(t=1\times10^7,5\times10^7,2\times10^8,5\times10^8\) years (b) \(t=1\times10^7,5\times10^7,3\times10^8,1\times10^9,3\times10^9\)
COLOR-MAGNITUDE DIAGRAMS

- two populations
 - young: < a few 10^7 years
 - old: 3-30$x10^8$ years
- ULX age for $E(B-V)=0.11$ mag
 - 10^7 years from F435W-F555W
 - $3x10^7$ years from F555W-F814W
- two ages converge at 5×10^6 years for $E(B-V)=0.33$ mag [$E(B-V)=0.44$ mag from X-ray absorption]
 - initial/current mass of $52/8.5$ Ms, radius of 7 Rs
SPECTRAL ENERGY DISTRIBUTION
SPECTRAL ENERGY DISTRIBUTION

The graph illustrates the spectral energy distribution with wavelength on the x-axis and F_λ (erg/s/cm2/Å) on the y-axis. Different symbols and line styles represent various stellar types:

- **05V** represented by green circles
- **07V** represented by pink squares
- **09V** represented by green dots
- **B1 III** represented by black triangles

A label indicates $ULX$$: E(B-V) = 0.11$. The graph shows a linear decrease in F_λ with increasing wavelength, which is typical for stars in these spectral types.
SPECTRAL ENERGY DISTRIBUTION
counterpart identified with C1
showed 15% variability
SED consistent with O7V (Zs, 30Ms, 9Rs) for $E(B-V) = 0.33$ mag
$E(B-V) = 0.33$ mag, $Z = 0.2Zs$: an age of 5 million years, mass 8.5 Ms, and radius 7 Rs
on the edge of a young open cluster, amid dominant old stars
IMBH formation
IMBH FORMATION

- If an IMBH, cannot form from evolution of high metallicity stars ...
IMBH formation

- if an IMBH, cannot form from evolution of high metallicity stars ...
- three merging scenarios
IMBH FORMATION

- if an IMBH, cannot form from evolution of high metallicity stars ...
- three merging scenarios

<table>
<thead>
<tr>
<th>merging of</th>
<th>black holes</th>
<th>massive stars</th>
<th>proto stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>birthplace</td>
<td>globular cluster</td>
<td>super star cluster</td>
<td>proto cluster</td>
</tr>
<tr>
<td>timescale</td>
<td>$>>10^7$ years</td>
<td><3Myr</td>
<td><0.5Myr</td>
</tr>
<tr>
<td>IMBH location</td>
<td>GC centers (1pc)</td>
<td>SSC centers (3pc)</td>
<td>around open clusters (100 pc)</td>
</tr>
<tr>
<td>note</td>
<td></td>
<td></td>
<td>low Z, external impact</td>
</tr>
</tbody>
</table>
IMBH formation

- if an IMBH, cannot form from evolution of high metallicity stars ...
- three merging scenarios

<table>
<thead>
<tr>
<th>merging of</th>
<th>black holes</th>
<th>massive stars</th>
<th>proto stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>birthplace</td>
<td>globular cluster</td>
<td>super star cluster</td>
<td>proto cluster</td>
</tr>
<tr>
<td>timescale</td>
<td>$>>10^7$ years</td>
<td><3Myr</td>
<td><0.5Myr</td>
</tr>
<tr>
<td>IMBH location</td>
<td>GC centers (1pc)</td>
<td>SSC centers (3pc)</td>
<td>around open clusters (100 pc)</td>
</tr>
<tr>
<td>note</td>
<td></td>
<td></td>
<td>low Z, external impact</td>
</tr>
</tbody>
</table>

X2’s location close to a young open cluster, the low Z, and possible collision/disruption may point to the merging of proto stars in proto clusters
• estimate the period assuming C1 overflows its Roche lobe
• Roche lobe size \(R_{cr} = a \cdot f(q) \)
 - \(q = \frac{M_{sec}}{M_{primary}} \)
 - Kopal tabulation (1959)
 - Paczynski approximation (1971)
 - Eggleton approximation (1983)
• equating \(R_{sec} = R_{cr} \) ...
 - shorter \(P \) for larger \(q \)
 - \(\rho = \frac{110}{P^2} \) for \(q < 0.3 \)
• constraints
 - \(P = 56 \) hr?
 - \(P < 56 \) hr \(\Rightarrow \) \(M < 15 \) Ms
• propose observations to detect such a period
RADIAL VELOCITY

![Graph showing radial velocity versus primary mass](image)

- (8.5M_☉ 7R_☉) secondary
- (8.5M_☉ 7R_☉) primary
- (30M_☉ 9R_☉) secondary
- (30M_☉ 9R_☉) primary

rotational velocity (km/s)

primary mass (M_☉)
Radial velocity

HeII line FWHM: 600 km/s
line shift: 300 km/s

Pakull et al. 2006
RADIAL VELOCITY
• if He II line from X-ray illuminated accretion disk, then a stellar mass black hole!
RADIAL VELOCITY

- if He II line from X-ray illuminated accretion disk, then a stellar mass black hole!
- however ...
 - emission lines from X-ray illuminated accretion disks are broad, >1200 km/s
 - radial velocity for a stellar mass black hole lower than 300 km/s
 - He II line from X-ray photoionized nebula/secondary
 - line shift severely affected by noise
if He II line from X-ray illuminated accretion disk, then a stellar mass black hole!

however ...

- emission lines from X-ray illuminated accretion disks are broad, >1200 km/s
- radial velocity for a stellar mass black hole lower than 300 km/s
- He II line from X-ray photoionized nebula/secondary
- line shift severely affected by noise

need further observations
- with higher signal-to-noise ratios and higher spectral resolution
- to sample radial velocities at different phases
RADIAL VELOCITY

- if He II line from X-ray illuminated accretion disk, then a stellar mass black hole!
- however ...
 - emission lines from X-ray illuminated accretion disks are broad, >1200 km/s
 - radial velocity for a stellar mass black hole lower than 300 km/s
 - He II line from X-ray photoionized nebula/secondary
 - line shift severely affected by noise
- need further observations
 - with higher signal-to-noise ratios and higher spectral resolution
 - to sample radial velocities at different phases
• if He II line from X-ray illuminated accretion disk, then a stellar mass black hole!
• however ...
• emission lines from X-ray illuminated accretion disks are broad, >1200 km/s
• radial velocity for a stellar mass black hole lower than 300 km/s
• He II line from X-ray photoionized nebula/secondary line shift severely affected by noise
• need further observations with higher signal-to-noise ratios and higher spectral resolution
to sample radial velocities at different phases