HIGH REDSHIFT 3CR SOURCES: CHANDRA OBSERVATIONS

- A STATUS REPORT

Belinda J. Wilkes¹, Joanna Kuraszkiewicz¹, Martin Haas², Steve Willner¹, Matt Ashby¹, Robert Antonucci³, Peter Barthel⁴, Mark Birkinshaw⁵, Dan Harris¹, Charles Lawrence⁶, Giovanni Fazio¹, Frank Heymann², Rolf Chini², Christian Leipski², Patrick Ogle⁷, Bernard Schulz⁸, Ralph Seibenmorgen⁵, Diana Worrall⁵

1: Harvard-Smithsonian CfA, 2: Ruhr-University, Bochum, 3: University California, Santa Barbara, 4: Kapteyn Institute, Groningen, 5:University of Bristol, 6: JPL, 7: Spitzer Science Center, 7: IPAC

BJW and JK gratefully acknowledge the financial support of NASA Chandra grant: G08-9106X.

ABSTRACT

We report preliminary results from new Chandra, snap-shot observations of 25 sources from a complete subset of 38 radio–lobe–selected, 3CRR massive radio galaxies with 1 < z < 2. These data will allow us to measure the strength of the nuclear activity and study the relation of X-ray flux and spectral hardness to orientation, estimated from the radio core-dominance. In combination with the rich, multi-wavelength dataset for this inclination unbiased sample (to include Spitzer 3.6-70μm photometry - see [1], [2]), we will test AGN Unification at these redshifts. SED fitting will further constrain models for the obscuring material, the relative numbers of obscured and unobscured quasars and X-ray selection effects.

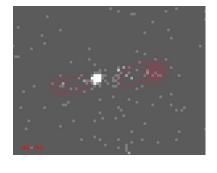
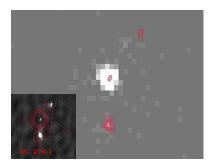
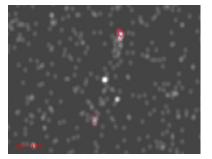




Table 1. Sample

Name	Redshift	Type^1	Date of Obsv.	Extended X-rays?
3 CRR 13	1.3 51	NLRG	06 /01/2008	
3 CRR 14	1.469	QSR/L	05/29/2008	yes
$3\mathrm{CRR43}$	1.459	QSR /CSS	02/17/2008	***
$3\mathrm{CRR}65$	1.176	NLRG	06/30/2008	yes
3 CRR68.1	1.238	QSR/L	02/10/2008	***
$3 \mathrm{CRR} 68.2$	1.575	LERG	03 /06 / 2008	yes
3 CRR 18 1	1.382	QSR/L		***
3 CRR 190	1.195	QSR /CSS	12/31/2007	***
3 CRR 204	1.112	QSR/L	01/13/2008	***
3 CRR 20 5	1.534	QSR/L	01/26/2008	***
3 CRR 208	1.110	QSR/L	01/08/2008	***
3 CRR 24 1	1.617	NLRG	03/13/2008	***
$3\mathrm{CRR}252$	1.100	NLRG	03 /11/2008	yes
3 CRR 266	1.275	NLRG	02/17/2008	***
3 CRR 26 7	1.140	NLRG		***
$3\mathrm{CRR}2\!68.4$	1.398	QSR/L		***
$3\mathrm{CRR}270.1$	1.532	QSR/L	02/16/2008	yes
3 CRR318	1.574	QSR /CSS	04 /0 5 / 20 08	***
3 CRR356	1.079	NLRG	01/20/2008	yes
3 CRR368	1.131	NLRG	06 /01 / 2008	
$3\mathrm{CRR}437$	1.480	NLRG	01/07/2008	yes
$3\mathrm{CRR469.1}$	1.336	LERG		***
$3\mathrm{CRR}470$	1.653	NLRG	03/03/2008	
4 C16 .49	1.880	QSR/L	01/21/2008	***
$4\mathrm{C}13.66$	1.450	NLRG	02/05/2008	

QSR/L: lobe dominated quasar, NLRG: Narrow Line Radio Galaxy, ${\rm QSR/CSS};$ Compact Steep Spectrum quasar, thought to be young FRII radio source, LERG; Low Excitation Radio Galaxy.

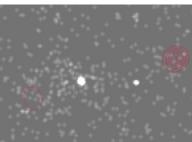
QSO Nuclear X-ray Spectra

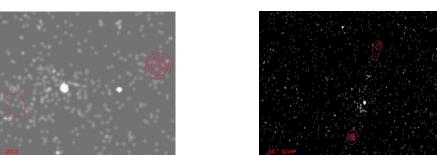
Initial results show harder X-ray spectra in the galaxies than in quasars, as expected for edge-on viewing angle:

- 3C65 (NLRG): HR = +0.3, $N_H \sim {\rm few} \times 10^{22} {\rm \,cm}^{-2}$, (hard (2–8 keV) counts: 126.59 ± 11.27 , soft $(0.3-2~{\rm keV})$ counts: $78.63\pm8.89)$
- 3C270.1 (QSO, lobe-dominated): HR = 0.5, N $_{H} \sim {\rm few} \times 10^{21}$ cm $^{-2}$ (hard counts: 168.77 ± 13.00 , soft counts: 563.87 ± 23.75)

Extended X-ray emission includes 45 counts (35 soft, 10 hard) where:

- \bullet the southern radio lobe includes 15.60 \pm 4.0 counts, most 14.88 ± 3.87 are soft (0.3-2 keV)
- the northern X-ray emission (close to the radio lobe) includes 9.6 \pm 3.2 also mostly soft counts: 8.8 \pm 3.0 , hard counts: 0.8 \pm 1.0
- cluster of galaxies detected in deep optical data out to a radius of $\sim\!\!1^\circ$ (see [3]). Reminder of diffuse X-rays (\sim 20 counts, HR \sim 0)


The steep (soft) spectrum in the lobes is consistent with an aging



Preliminary results include detection of extended X-ray emission which:

- is associated with radio lobes as in: 3C 270.1, 3C 437
- has structure in between radio lobes as in: 3C 65, 3C 68.2, 3C 368
- is diffuse and not correlated with radio emission: 3C 252, 3C 356, 3C 14.

- | [H. F. Heymann "Cluster assembly around z=1.53 quasar 3C270.1" |2] C. Leipski "High redshift 3CR sources: Spitzer mid-IR spectra" |3] S. Willner "High redshift 3CR sources: Mid-IR spectral energy distributions"

 $Fig.\ 2-3CR\ sources\ with\ diffuse\ X-ray\ emission\ not\ correlated\ with\ radio\ emission.\ Red\ contours\ show\ radio\ emission.$ Angular separation between radio lobes: 3C 252: 52", 3C 356: 72.5". Bright X-ray source W of 3C252 has no optical or radio identification.