

Six Years of Science with Chandra Symposium Cambridge, MA 2 Nov 2005

An Episodic Heating Model for Stellar Coronae: Spectral Diagnostics for Non-Equilibrium Ionization

Nancy S. Brickhouse

Harvard-Smithsonian Center for Astrophysics

Chandra X-ray Center

Collaborators: Priya Desai, Andrea Dupree, Dick Edgar, Ronnie Hoogerwerf, John Raymond, Randall Smith

Acknowledgments: Aad van Ballegooijen

The Structure of Stellar Coronae: Observational Evidence

- A diversity of flares in different active stars
- Sharply peaked Emission Measure Distribution
- High N_e (>10¹² cm⁻³) at high T_e (10⁷ K)
- X-ray/EUV flux ratios anomalously large

Yohkoh Image of the Sun

Coronal Loop Models of the Emission Measure Distribution

Capella: 2-T_e fits to EXOSAT spectrum required large loops with expanding cross sections.

Schrijver, Lemen, & Mewe 1989

EUVE spectra confirmed sharp EMD peak at 6 MK, with extremely steep $T_{\rm e}$ rise.

Dupree et al. 1993

Electron Density Determination for Capella

Narrow EMD Peaks and High N_e Inconsistent with Standard Loop Models

- ullet Narrow EMD peaks and high N $_{\rm e}$ found in many other active systems, though Capella remains an extreme case.
 - e.g. Sanz-Forcada et al. 2003, Testa et al. 2004
- Simple hydrostatic loop models with uniform cross section give too broad an EMD.
- $^{\bullet}$ Hydrodynamic models can produce the EMD shape, but only for lower N_e (~10¹⁰ cm⁻³) at T_{max} (10 MK). Testa et al. 2005
- High N_e at high T_e is more reminiscent of large flares on the Sun.
- Note that at lower T_e (2 MK), N_e is also lower (2 x 10^{10} cm⁻³). It's whether or not these lower pressures are present in the same structures or represent a separate class of structures.

Observed/Predicted Line Ratios

All X-ray/EUV line ratios are larger than predicted (by all codes).

For the strongest lines, the codes agree: discrepancies are 30% for Fe XVIII and a factor of 2 for Fe XIX.

Predictions are based on the EMD with its peak at 6 MK.

Desai et al. (Emission Line Project Collaboration) 2005

T_e-Dependence of Fe XVIII and XIX Line Ratios

$$I_{EUV}$$
 __EUV $[T_e]$
—— = ——— exp (-_E/k T_e)
 I_{X-ray} __X-ray $[T_e]$

These simple Te diagnostics are not consistent with the ionization state of the plasma.

This motivates our investigation of time-dependent NEI effects in impulsively heated loops.

Discrepancies are not explained by: atomic rate uncertainties calibration uncertainties absorption time variability

Non-Equilibrium Ionization (NEI)

- EMD models assume collisional ionization equilibrium: Flux ~ _(T_e) ∫N_e² dV.
- In an NEI plasma, the charge state lags the instantaneous temperature T_e.
- N_e_t determines the charge state.
- For a given N_e and T_e, ionization is very fast compared with recombination.
- Mass conservation (N_e dV = const) implies that a coronal loop, impulsively heated and then cooled by radiation and conduction, will emit primarily during recombination.

An Episodic Heating Model

We consider episodic heating (nanoflares) with:

- heat input to the chromosphere
- adiabatic expansion with rapid cooling.

We calculate the time-dependent ionization state and obtain the resulting emission w/ APEC.

Edgar et al. 2000; Smith et al. 2001

Conclusions

- X-ray/EUV ratios provide new T_e diagnostic.
- Capella observations suggest an ionizing plasma.
- Chromospheric evaporation gives a natural explanation for high N_e at high T_e.
- The ionizing phase is difficult to see. Adiabatic expansion helps, but not enough.
- Heating models require hydrodynamics and NEI.
- Other effects, e.g. non-Maxwellian distributions, might be important for beam heating.
- * Six years and more of Chandra may shed light on the long-standing coronal heating problem.

See also the poster by Desai et al.

Toward Accurate T_e Diagnostics

Chen, Kirby, Brickhouse, & Smith 2005