Six Years of Science with Chandra Symposium Cambridge, MA 2 Nov 2005 #### An Episodic Heating Model for Stellar Coronae: Spectral Diagnostics for Non-Equilibrium Ionization Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Chandra X-ray Center Collaborators: Priya Desai, Andrea Dupree, Dick Edgar, Ronnie Hoogerwerf, John Raymond, Randall Smith Acknowledgments: Aad van Ballegooijen # The Structure of Stellar Coronae: Observational Evidence - A diversity of flares in different active stars - Sharply peaked Emission Measure Distribution - High N_e (>10¹² cm⁻³) at high T_e (10⁷ K) - X-ray/EUV flux ratios anomalously large Yohkoh Image of the Sun #### **Coronal Loop Models of the Emission Measure Distribution** Capella: 2-T_e fits to EXOSAT spectrum required large loops with expanding cross sections. Schrijver, Lemen, & Mewe 1989 EUVE spectra confirmed sharp EMD peak at 6 MK, with extremely steep $T_{\rm e}$ rise. Dupree et al. 1993 #### **Electron Density Determination for Capella** ## Narrow EMD Peaks and High N_e Inconsistent with Standard Loop Models - ullet Narrow EMD peaks and high N $_{\rm e}$ found in many other active systems, though Capella remains an extreme case. - e.g. Sanz-Forcada et al. 2003, Testa et al. 2004 - Simple hydrostatic loop models with uniform cross section give too broad an EMD. - $^{\bullet}$ Hydrodynamic models can produce the EMD shape, but only for lower N_e (~10¹⁰ cm⁻³) at T_{max} (10 MK). Testa et al. 2005 - High N_e at high T_e is more reminiscent of large flares on the Sun. - Note that at lower T_e (2 MK), N_e is also lower (2 x 10^{10} cm⁻³). It's whether or not these lower pressures are present in the same structures or represent a separate class of structures. #### **Observed/Predicted Line Ratios** All X-ray/EUV line ratios are larger than predicted (by all codes). For the strongest lines, the codes agree: discrepancies are 30% for Fe XVIII and a factor of 2 for Fe XIX. Predictions are based on the EMD with its peak at 6 MK. Desai et al. (Emission Line Project Collaboration) 2005 #### T_e-Dependence of Fe XVIII and XIX Line Ratios $$I_{EUV}$$ __EUV $[T_e]$ —— = ——— exp (-_E/k T_e) I_{X-ray} __X-ray $[T_e]$ These simple Te diagnostics are not consistent with the ionization state of the plasma. This motivates our investigation of time-dependent NEI effects in impulsively heated loops. Discrepancies are not explained by: atomic rate uncertainties calibration uncertainties absorption time variability ## Non-Equilibrium Ionization (NEI) - EMD models assume collisional ionization equilibrium: Flux ~ _(T_e) ∫N_e² dV. - In an NEI plasma, the charge state lags the instantaneous temperature T_e. - N_e_t determines the charge state. - For a given N_e and T_e, ionization is very fast compared with recombination. - Mass conservation (N_e dV = const) implies that a coronal loop, impulsively heated and then cooled by radiation and conduction, will emit primarily during recombination. ### **An Episodic Heating Model** We consider episodic heating (nanoflares) with: - heat input to the chromosphere - adiabatic expansion with rapid cooling. We calculate the time-dependent ionization state and obtain the resulting emission w/ APEC. Edgar et al. 2000; Smith et al. 2001 #### **Conclusions** - X-ray/EUV ratios provide new T_e diagnostic. - Capella observations suggest an ionizing plasma. - Chromospheric evaporation gives a natural explanation for high N_e at high T_e. - The ionizing phase is difficult to see. Adiabatic expansion helps, but not enough. - Heating models require hydrodynamics and NEI. - Other effects, e.g. non-Maxwellian distributions, might be important for beam heating. - * Six years and more of Chandra may shed light on the long-standing coronal heating problem. See also the poster by Desai et al. ### Toward Accurate T_e Diagnostics Chen, Kirby, Brickhouse, & Smith 2005