X-raying the multi-phase ISM along the sightline to the Galactic Center

Yangsen Yao MIT Kavli Institute

Q. Daniel Wang

Umass Astronomy Dept.

The 6 Years of *Chandra* Symposium November 2-4 2005

Abundance:

- Recent downward revision of solar abundances of C, N, O, and Ne brings an inconsistency between solar model predictions and helioseismological measurements (e.g., Bahcall et al. 2005);
- ★ All metals are produced in stars; stellar abundance vs. ISM one
 —> metal enrichment history of ISM!
- / Hot gas volume filling factor:
 - The importance: interaction between the Galactic disk and corona, the significances of the magnetic field, cosmic rays, and turbulence motion in cooling/heating the ISM, and the pressure balances among multiple ISM phases.
 - ★ McKee & Ostriker (1977): "three phase ISM model", $\eta_h \gtrsim 80\%$.
 - ★ Slavin & Cox (1993): considering the magnetic field and thermal conduction, $\eta_h \sim 18\%!$

★ Arbitrated by OBSERVATIONS!!!

Absorption line diagnostic & a model absline

 \checkmark Ionization fraction vs. T (Arnaud & Rothenflug 1985):

The majority part of hot gas can only traced by X-ray!

✓ An advanced absorption line model <u>absline</u> (Yao & Wang 2005): $I(\epsilon) = I_c(\epsilon)e^{-\tau(\epsilon)}$ (Neither "Gaussian" nor "gabs"!!) $\tau(\epsilon) \sim \tau(\epsilon, E_l, f_{ij}, \Gamma, N_H, f_a, T, b_v(T, \xi))$ (All physical parameters!) <u>Joint analysis capability!</u>

Source: 4U 1820–303 (NGC 6624)

Galactic center region: Why 4U 1820–303?

- 1. LMXB: no stellar wind confusion;
- 2. Very bright and super compact (< $0.1R_{\odot}$): no systematic confusion;
- 3. Residing in NGC 6624 (l, b) = $(2^{\circ}.79, -7^{\circ}.91)$ and D = 7.6kpc

 $\implies \sim 1$ kpc below the disk plane!

4. Pulsar (PSR 1820-30A/B) DM: 87 cm⁻³ pc $\sim 2.7 \times 10^{20}$ cm⁻².

5. UV observations on nearby stars: HD 167402 and HD 163522 (O VI and \sim Al III line; $v_b=62 \text{ km s}^{-1}$ (Savage et al. 1990). The 6 Years of Chandra Symposium, November 2-4 2005 – p.4/16

ObsID	Obs. Date	Detector and Grating	Exp. (ks)
98	2000 Mar. 10	HRC-LETG	15.12
1021	2001 Jul. 21	ACIS-HETG	9.70
1022	2001 Sep. 12	ACIS-HETG	10.89

Our final spectrum: co-add all the three observations!

Mi

Assuming isothermal temperature an distribution, and a CIE absorption plasma: $b_v = 255(165, 369) \text{ km s}^{-1},$ $\log[T (K)] = 6.34(6.29, 6.41),$ $\log[N_{OVII} \text{ (cm}^{-2})] = 16.3(16.1, 16.5),$ $\log[N_{OVIII} \text{ (cm}^{-2})] = 16.4(16.2, 16.6),$ $\log[N_{\rm NeIX} \ (\rm cm^{-2})] = 16.0(15.9, 16.1),$ Ne/O abundance ratio: 1.4(0.9, 2.1) solar (Anders & Grevesse 1989) 3.0 abundance ratio 2.5 2.0 1.5Ne/0 1.0 0.5 6.256.306.406.456.35

The 6 Yedogf T(K) dra Symposium, November 2-4 2005 – p.7/16

Ne/O abundance ratio is ~ 1.4 solar value!

Comparison: (N/O) in cool phase is 1.6(0.9, 2.3) times solar toward Cyg X–2 (Takei et al. 2002). The measures on the Sun:

- ✓ (Ne/O) = 2.85 ± 0.07 solar; solar model problem solved!!! (Drake & Testa 2005) About 3σ larger than our Ne/O ratio in hot phase!
- ✓ (Ne/O) ~ 1 solar (Schmelz et al. 2005; Young 2005)
 Consistent with our measurement in hot phase!
 Solar model problem comes back?!

Hot gas filling factor (1)

Define $N_O^w = N_{\text{OII+OIII}}$, $(N_{\text{OII}} \text{ and } N_{\text{OIII}} \text{ are measured in this work})$ $N_O^h = \beta N_{\text{OVII+OVIII}}, \beta \ge 1 \text{ for OVI and OIX.}$ $(O/H)^h = \alpha (O/H)^w, \alpha \ge 1,$ $\theta = \frac{T^w N_{\text{OII+OIII}}}{T^h N_{\text{OVII+OVIII}}}, \quad T^w \sim 8 \times 10^3 \text{ K},$ Pressure balance: $T^h n^h = \zeta T^w n^w, \zeta \ge 1$ for other pressure source (magnetic field?)- $\eta^h + \eta^w + \eta^c = 1 \text{ and } \eta^h = \chi \eta^w.$ $\Rightarrow \boxed{\chi = \frac{\beta}{\zeta \alpha \theta}}.$ $\star \text{ For } \alpha = \beta = \zeta \simeq 1, \quad \chi = 36(14, 67).$

- For $\eta^w = \eta^c$, $\eta^h = 0.95(0.92, 0.99)!$
- ★ Requiring $\eta^h \lesssim 0.8$, $\zeta \gtrsim 4.5(1.8, 8.2)!$ <u>Consistent with the situation in Local ISM</u> (Bowyer et al. 1995)!!!

Hot gas filling factor (2)

/ Assuming the emission and absorption are produced in the same gas! $EM = n_e n_H D\eta^h = 0.84 n_H^2 D\eta^h$, factor 0.84 accounting for He contribution; $N_H = n_H D\eta^h$, D is the distance.

 $\eta^h = 0.84 N_H^2 / (EM \times D)$

★ ROSAT 3/4 keV SXB (Snowden et al. 1997):

Transfer the intensity to emission measure: EM ~ 0.12 /A cm⁻⁶ pc The real measurement: $N_{\rm H} = 1.26(0.79, 1.58)$ /A $\times 10^{20}$ cm⁻²,

 $\eta^{h} = 1.53(0.96, 1.93)/A$ A is the metallicity!

Taking into account the extragalactic contribution will cause an increase of η^{h} !

 ★ Hα map (Finkbeiner 2003) (warm phase filling factor): Hα measure: 5R ~ EM = 10κ cm⁻⁶ pc (κ ≥ 1 accounting for the extinction correction).

The pulsar DM, $N_e \sim 2.68 \times 10^{20}$, tracing all the free electrons.

 $\eta^w = 0.059\xi^2/\kappa$, $\xi(\leq 1)$ accounting for the warm electron fraction.

The filling factor of hot gas is indeed large!

- / The OVII, OVIII, and NeIX K α absorption lines have been clearly detected in the *Chandra* grating spectrum of 4U 1820–303.
- A joint-analysis of the above lines with non-detected OVII K β absorption line provides b_v , T, and N_{ion} . The derived Ne/O abundance ratio of 1.4(0.9, 2.1) times solar, is insensitive to the exact temperature distribution assumed.
- ✓ The obtained Ne/O ratios is significantly smaller than the value indicated in the recent emission line measurement of solar-like stars, but consistent with the direct measure from the Sun itself.
- V For the first time, we provide an observational constraint to the hot gas filling factor η^h ; $\eta^h \sim 1$, and/or the thermal pressure of the hot gas is several times higher than that of warm one (a situation similar to that in local ISM).

IUE observation on HD 163522: Al III (v_b =62 km s⁻¹) (Savage, Sembach, & Massa 1990).

For $v_b = 62 \text{ km s}^{-1}$: $\log[N_{OI}(\text{cm}^{-2})] = 17.6(17.3, 17.9)$ $\log[N_{OII}(\text{cm}^{-2})] = 17.4(16.9, 17.6)$ $\log[N_{OIII}(\text{cm}^{-2})] = 17.0(16.5, 17.5)$ A 50% variation of v_b only causes $\leq 20\%$ changes of N.

HRC-LEG only!

Parameters: $\lambda_E = 14.28(14.23, 14.35)$ Å, $\tau_E = 8.6(7.0, 10.2) \times 10^{-2}$. Adopting the cross section 3.67×10^{-19} cm⁻² (Balucinsha-Church & McCammon 1992), we obtain $N_{\rm Ne} = 2.3(1.9, 2.7) \times 10^{17}$ cm⁻².

Mi

The 6 Years of Chandra Symposium, November 2-4 2005 - p.14/16

Included line(s)	$b_v ({\rm cm}^{-2})$	$\log N_{\rm O^{+6}}$	$\log T(\mathbf{K})$	Ne/O
${ m O}^{+6}{ m K}lpha$	< 446	17.2(16.3,18.7)		
$\mathrm{O}^{+6}\mathrm{K}lpha,\mathrm{K}eta$	298(169,505)	16.3(16.1,16.5)		

Included line(s)	$b_v ({\rm cm}^{-2})$	$\log N_{\rm O^{+6}}$	$\log T(\mathbf{K})$	Ne/O
${ m O}^{+6}{ m K}lpha$	< 446	17.2(16.3,18.7)	•••	•••
$\mathrm{O}^{+6}\mathrm{K}lpha,\mathrm{K}eta$	298(169,505)	16.3(16.1,16.5)	•••	•••
$\mathrm{O}^{+6}\mathrm{K}lpha,\mathrm{K}eta,\mathrm{O}^{+7}\mathrm{K}lpha$	325(197,490)	16.3(16.1,16.5)	6.34(6.29,6.41)	•••

	Included line(s)	$b_v (\mathrm{cm}^{-2})$	$\log N_{\rm O^{+6}}$	$\log T(\mathbf{K})$	Ne/O
	$\mathrm{O}^{+6}\mathrm{K}lpha$	< 446	17.2(16.3,18.7)	•••	•••
	$\mathrm{O}^{+6}\mathrm{K}lpha,\mathrm{K}eta$	298(169,505)	16.3(16.1,16.5)		
	$\mathrm{O}^{+6}\mathrm{K}lpha,\mathrm{K}eta,\mathrm{O}^{+7}\mathrm{K}lpha$	325(197,490)	16.3(16.1,16.5)	6.34(6.29,6.41)	
	$O^{+6}K\alpha$, $K\beta$, $O^{+7}K\alpha$, $Ne^{+8}K\alpha$	255(165,369)	16.3(16.1,16.5)	6.34(6.29,6.41)	1.4(0.9,2.1)
4	$\log N_{O+7} = 16$	5.4(16.2, 16.6),	$\log N_{\rm Ne^{+8}} = 16.0$)(15.9, 16.1).	

Applications	(3) – a summary
--------------	-----------------

		ISM Phase	
Parameter	neutral	warm ionized	hot
		column density	
0	17.6(17.3, 17.9)	17.6(17.2, 17.8)	16.7(16.5, 16.8)
	17.9(17	7.7, 18.1) 17.6(17.3	3, 17.8)
Н	21.2^{e}	20).4
Ne	17.4(17)	.3, 17.5)	16.0(15.9, 16.1)
		Abundances	
O/H	0.3(0.2, 0.6)	2.0(0.8, 3.6)	$\gtrsim 0.94$
	0.5(0	0.3, 0.9) 2.2(1.1,	3.5)
Ne/H	1.2(1.0, 1.4)		
Ne/O	2.1(1.1	3, 3.5)	1.4(0.9, 2.1)

Applications (3) – comparisons

- / The measures of Takei et al. (2002) toward Cygnus X–2 (87. $^{\circ}30$, -11. $^{\circ}29$):
 - ★ (O/H) = 0.47 ± 0.16 solar in cool phase, and will be 1.5 times higher if consider the compound form, toward Cygnus X-2.
 Our value is N_{OI+OII+OIII}/[N(HI)+(1 − ξ)ηN_e] = 0.52(0.33, 0.85) solar.
 - ★ (Ne/H) = 0.75 ± 0.20 from Takei et al. (edge study).
 (Ne/H) = 1.2 ± 0.2 (this work). Metal enhancement toward GC region!?
 - ★ (Ne/O) = 1.6(0.9, 2.3) in cool atomic phase (Takei et al.)
 (Ne/O) = 2.1(1.3, 3.5) in cool phase, and 1.4(0.9, 2.1) in hot phase (this work).

Applications (3) – comparisons

- / The measures of Takei et al. (2002) toward Cygnus X–2 (87. $^{\circ}30$, -11. $^{\circ}29$):
 - ★ (O/H) = 0.47 ± 0.16 solar in cool phase, and will be 1.5 times higher if consider the compound form, toward Cygnus X–2.
 Our value is N_{OI+OII+OIII}/[N(HI)+(1 − ξ)ηN_e] = 0.52(0.33, 0.85) solar.
 - ★ (Ne/H) = 0.75 ± 0.20 from Takei et al. (edge study).
 (Ne/H) = 1.2 ± 0.2 (this work). Metal enhancement toward GC region!?
 - ★ (Ne/O) = 1.6(0.9, 2.3) in cool atomic phase (Takei et al.)
 (Ne/O) = 2.1(1.3, 3.5) in cool phase, and 1.4(0.9, 2.1) in hot phase (this work).
- \checkmark The measures on the Sun:
 - (Ne/O) = 2.85 ± 0.07 solar; solar model problem solved!!! (Drake & Testa 2005) Apparently consistent with our value in cool phase. Note: uncertainty of compound oxygen contribution! About 3σ larger than our Ne/O ratio in hot phase!
 - ★ (Ne/O) ~ 1 solar (Schmelz et al. 2005; Young 2005)
 Consistent with our measurement in hot phase!
 Solar model problem comes back?!