Experimental and Theoretical X-ray Wavelengths of Astrophysical Ions

M. F. Gu¹, P. Beiersdorfer¹, G. V. Brown¹, H. Chen¹, D. B. Thorn¹, and S. M. Kahn²

¹Lawrence Livermore National Laboratory, CA 94550 ²Department of Physics, Stanford University, CA 94305

Outline

- LLNL EBIT measurements of X-ray wavelengths, old and new.
- Many-body perturbation theory for open-shell ions.
- MBPT calculations for Fe and Ni L-shell ions.
- MBPT calculations for Fe UTA transitions.
- Summary and Future work.

Brown et al., 1998

M. F. Gu

M. F. Gu

M. F. Gu

9

2nd order MBPT for Non-degenerate Single Level

$$E_k = <\Phi_k |H|\Phi_k > +E^2,$$

where

$$E^{2} = \sum_{n \neq k} \frac{\left\langle \Phi_{k} | H | \Phi_{n} \right\rangle \left\langle \Phi_{n} | H | \Phi_{k} \right\rangle}{E_{k}^{0} - E_{n}^{0}}.$$

The general open shell ions, many levels are near degenerate. The interaction between these levels must be taken into account in all orders, leading to the multi-reference MBPT theory.

Multi-reference MBPT Theory (Lindgren, JPB, 7, 2441) The exact energy and wavefunctions for the Hamiltonian H_{DCB}

 $H_{DCB}\Psi_k = E_k\Psi_k.$

Split $H_{DCB} = H_0 + V$,

$$H_0 = \sum_i [h_d(i) + U(r_i)]$$
$$V = -\sum_i \left[\frac{Z}{r_i} + U(r_i)\right] + \sum_{i < j} \left(\frac{1}{r_{ij}} + B_{ij}\right)$$

Define zeroth-order wavefunction and energy as the eigen functions Φ_k and eigen values E_k^0 of H_0 , which are easily obtained by forming determinants from single-electron wavefunctions once U(r) is given.

Devide the configuration space into M and N. M contains the levels of interest, and N contains correlation configurations, usually, all single and double excitations from M.

Define a projection operator P,

$$\Psi_k^0 = P\Psi_k,$$

where Ψ_k^0 is generally a linear combination of the subset of Φ_k that belong to the model space M.

It is generally possible to define a wave operator, Ω ,

 $\Psi_k = \Omega \Psi_k^0.$

Rewrite the Schrödinger equation

$$H_{eff}\Psi_k^0 = PH\Omega\Psi_k^0 = E_k\Psi_k^0.$$

This equation defines an effective Hamiltonian in the model space

$$H_{eff} = PH_0P + PV\Omega,$$

whose eigenvalues are the true eigenenergies of the full Hamiltonian. The effective Hamiltonian is generally non-hermitian, and the eigenfunctions, Ψ^0_k are not necessarily orthogonal. The starting point of the MBPT expansion

```
[\Omega, H_0] = V\Omega - \Omega V\Omega,
```

The potential $V\Omega$ up to irst order is

$$<\Phi_i|V\Omega|\Phi_j> = <\Phi_i|V|\Phi_j> + \sum_{r\in N} \frac{<\Phi_i|V|\Phi_r> <\Phi_r|V|\Phi_j>}{E_j^0 - E_r^0},$$

The first order effective Hamiltonian is then

$$<\Phi_i|H_{eff}^{(1)}|\Phi_j> = H_{DCB}^{ij} + \sum_{r\in N} \frac{V^{ir}V^{rj}}{E_j^0 - E_r^0},$$

Once the matrix $H_{eff}^{(1)}$ is determined, one may solve the generalized eigenvalue problem to obtain the 2nd-order MBPT energies.

Numerical Evaluation of 2nd-order Expansion

$$\begin{split} V &= \sum_{config.} Z^{0}(\alpha,\beta)V_{\alpha\beta} \\ &+ \sum_{config.} (Z^{k}(\alpha,\gamma) \cdot Z^{k}(\beta,\delta)X^{k}(\alpha\beta,\gamma\delta)) \\ \Delta H &= \sum_{r \in N} \frac{<\Phi_{i}|V|\Phi_{r}><\Phi_{r}|V|\Phi_{j}>}{E_{j}^{0}-E_{r}^{0}} \\ \text{Num.} &= \sum_{config.} <\Phi_{i}|Z^{0}(\alpha,\beta)Z^{0}(\alpha',\beta')|\Phi_{j}> \\ &+ \sum_{config.} <\Phi_{i}|Z^{0}(\alpha,\beta)Z^{k}(\alpha',\gamma') \cdot Z^{k}(\beta',\delta')|\Phi_{j}> \\ &+ \sum_{config.} <\Phi_{i}|Z^{k}(\alpha,\gamma) \cdot Z^{k}(\beta,\delta)Z^{0}(\alpha',\beta')|\Phi_{j}> \\ &+ \sum_{config.} <\Phi_{i}|Z^{k}(\alpha,\gamma) \cdot Z^{k}(\beta,\delta)Z^{k}(\alpha',\gamma') \cdot Z^{k}(\beta',\delta')|\Phi_{j}> \end{split}$$

Calculated wavelengths of 2-3 transitions of Fe L-shell ions

Gu et al., 2007

MBPT Wavelengths and EBIT Measurements of Fe High-n Lines

Gu2007

Measuring the AGN Outflow Velocity with UTA

Ion	λ _{observed} (Å)	$\lambda_{ m rest}^{a}$ (Å)	$\lambda_{\mathrm{model}}^{}\mathrm{b}}$ (Å)	Outflow Velocity ^c (km s ⁻¹)	Ion Column Density (10 ¹⁶ cm ⁻²)
O ⁺⁷	15.144 ± 0.003^{d}	15.176	15.146	-633 ± 59	400 ± 60
	15.970 ± 0.005^{e}	16.006	15.973	-675 ± 94	
O ⁺⁶	17.351 ± 0.005	17.395	17.361	-759 ± 81	110 ± 20
	17.161 ± 0.005	17.199	17.165	-663 ± 89	
	17.048 ± 0.005	17.084	17.050	-632 ± 88	
Fe ⁺¹⁶	14.980 ± 0.003	15.013	14.985	-659 ± 60	3.0 ± 0.5
	$15.231\pm0.002^{\rm f}$	15.261	15.234	-590 ± 39	
		Fe-M UTA			
Fe ⁺¹⁵	$15.231 \pm 0.002^{\rm f}$	15.250	15.234	-374 ± 39	0.6 ± 0.2
Fe ⁺¹⁴	15.322 ± 0.006	15.316	15.317	$+118 \pm 118$	0.3 ± 0.1
Fe ⁺¹³	$15.569 \pm 0.008^{ m g}$	15.580	15.580	$+212 \pm 154$	1.4 ± 0.4
Fe ⁺¹²	$15.844 \pm 0.014^{ m g}$	15.848	15.848	-76 ± 265	1.0 ± 0.3
Fe ⁺¹¹	$15.970 \pm 0.005^{\rm e}$	15.967	15.973	$+56 \pm 94$	3.0 ± 2.0
Fe ⁺¹⁰	16.154 ± 0.005	16.150	16.150	$+74 \pm 93$	4.0 ± 0.7
Fe ⁺⁹	16.329 ± 0.005	16.339	16.340	-184 ± 92	5.5 ± 0.7
Fe ⁺⁸	16.496 ± 0.004	16.510	16.509	-252 ± 73	4.0 ± 0.5
Fe ^{+7 h}		16.655			3.0 ± 1.0
Fe ^{+6 h}		17.095			2.0 ± 0.7
Fe ^{+5 h}		17.218			1.5 ± 0.6
Fe ^{+4 h}		17.291			1.0 ± 0.6
Fe ^{+3 h}		17.405			≤ 0.8

Best-Fit Velocities and Column Densities for Ions Detected in the 14.9–17.5 Å Region of the HETGS Spectrum of NGC 3783

Holczer, Behar, & Kaspi, 2005

Comparison of MBPT and HULLAC Wavelengths for Fe UTA

21

M. F. Gu

🗳 LLNL, PAT

Summary

- LLNL EBIT measurements of X-ray wavelengths have made significant contributions to the field.
- Many-body perturbation theory has been implemented in the Flexible Atomic Code.
- MBPT wavelengths reaches wavelengths accuracy matching the spectral resolutions of the X-ray observatories.
- Future measurements of K-shell transitions of Ne, Mg, Si, and S, and L-shell transitions of Fe UTA.
- Future calculations of K-shell transitions of O, Ne, Mg, Si, and S.