X-ray Grating Spectroscopy of Cataclysmic Variables

Christopher Mauche

Lawrence Livermore National Laboratory

X-ray Grating Spectroscopy • Cambridge, MA • 2007 July 11–13

Accretion geometry and X-ray emission regions of nonmagnetic CVs & polars

Nonmagnetic CV (dwarf nova, novalike variable)

white dwarf

V.Burwitz

M.Garlick

Accretion geometry and X-ray emission regions of intermediate polars (EX Hya)

Hellier et al. (1987); Rosen, Mason, & Córdova (1988)

EUVE SW and **Chandra** LETG spectra of dwarf novae in outburst

EUVE SW and **Chandra** LETG spectra of dwarf novae in outburst

Chandra LETG spectra of dwarf novae in outburst

Optical & EUVE DS light curves of OY Car

EUV flux is not eclipsed by the white dwarf

Mauche & Raymond (2000, ApJ, 541, 924)

Model of the EUVE SW spectrum of OY Car

Mauche & Raymond (2000, ApJ, 541, 924)

Model of the *Chandra* LETG spectrum of SS Cyg

Mauche (2004, ApJ, 610, 422)

Chandra LETG spectrum of WZ Sge

Wheatley & Mauche (2007, in preparation)

XMM EPIC light curves and spectra show two sources of X-ray emission in UX UMa

Two types of X-ray spectra in CVs

Chandra HETG spectra of nonmagnetic CVs

Chandra HETG spectra of SS Cyg in quiescence and outburst

Mauche et al. (2005, in Astrophysics of CVs & Related Objects)

Chandra HETG spectra of U Gem in quiescence and outburst

Szkody et al. (2002, ApJ, 574, 942) Mauche et al. (2005, in Astrophysics of CVs & Related Objects) Güver et al. (2006, MNRAS, 372, 450)

Chandra HETG spectrum of V603 Aql

Mukai & Orio (2005, ApJ, 622, 602)

Detail of Chandra HETG spectrum of GK Per

Chandra HETG spectrum of EX Hya (an IP with $P_{\text{binary}} = 98 \text{ min}, P_{\text{spin}} = 67 \text{ min}, i \approx 77^{\circ}$)

500 ks observation, N. Brickhouse, PI

Comparison of HR 1099 and EX Hya

EX Hya is missing lines of: Fe XVII λ 17.10, Fe XX λ 12.80, Fe XXI λ 12.26, and has an inverted Fe XXII λ 11.92/ λ 11.77 ratio.

H- and He-like lines of EX Hya

All the He-like *f* lines are missing in EX Hya.

Mauche (2002, in Physics of CVs and Related Objects)

He-like R = z/(x+y) = f/i line ratios

Absence of He-like *f* lines in EX Hya is plausibly due to photoexcitation.

Mauche (2002, in Physics of CVs and Related Objects)

...were calculated with the Livermore X-ray Spectral Synthesizer (LXSS), a suite of IDL codes that calculates spectral models as a function of temperature and electron density using primarily HULLAC atomic data.

The following spectra are based on models with:

lon	levels	radrate	colrate
Fe XXIV	76 116 228 591 609 605	4,100	1,704
Fe XXIII		8,798	6,478
Fe XXII		37,300	24,084
Fe XXI		227,743	153,953
Fe XX		257,765	165,350
Fe XIX		240,948	164,496
Fe XVIII	456	141,229	93,583
Fe XVII	281	49,882	33,887

Fe XVII

Fe XX

Fe XXI

Fe XXII

Density constraints from Fe XVII λ 17.10/ λ 17.05 and Fe XXII λ 11.92 / λ 11.77

Mauche, Liedahl, & Fournier (2001, ApJ, 560, 992)

Mauche, Liedahl, & Fournier (2003, ApJ, 588, L101)

Radial velocity variations of the X-ray emission lines of EX Hya

Dynamically-derived white dwarf mass agrees with the value obtained from the Fe XXV/XXVI line ratio in the ASCA SIS spectrum of EX Hya (Fujimoto & Ishida 1997).

Hoogerwerf, Brickhouse, & Mauche (2004, ApJ, 610, 411)

Chandra HETG spectrum of AE Aqr (an IP with $P_{\text{binary}} = 9.88$ hr, $P_{\text{spin}} = 33.08$ s, $i \approx 60^{\circ}$)

Different physical models for AE Aqr:

Oblique rotator model

Magnetic propeller model

Patterson (1979)

Wynn, King, & Horne (1997)

XMM EPIC & RGS spectra of AE Aqr

Itoh et al. (2006, ApJ, 639, 397)

He-like N, O, & Ne density diagnostics from the *XMM* RGS spectrum of AE Aqr

 $n_{\rm e} \sim 10^{11} \, {\rm cm}^{-3}$: low for a magnetic CV

Itoh et al. (2006, ApJ, 639, 397)

X-ray, UV, optical, & radio light curves of AE Aqr

Optical: Ioannou (Skinakas), Welsh (Laguna), CBA, & AAVSO Radio: Abada-Simon & Desmurs

Strong correlation of the flares in the X-ray, UV, and optical, but not in the radio.

Mauche et al. (2007, in preparation)

Pulse-timing delays of AE Aqr

Optical: *a* sin*i* = 2.04 +/- 0.13 s de Jager et al. (1994)

HST FOS UV: *a* sin*i* = 1.93 +/- 0.03 s Eracleous et al. (1994)

Chandra HETG X-ray: *a* sin*i* = 2.17 +/- 0.48 s Mauche (2006)*

Pulsating optical, UV, & X-ray source follows the motion of the white dwarf.

*Mauche (2006, MNRAS, 369, 1983)

AE Aqr spin-phase light curves and radial velocity variation

X-ray emission line radial velocities consistent with emission from *two* poles. Mauche (2007, in preparation)

Acknowledgements

Support for this work was provided by NASA through *Chandra* Award Number GO5-6021X issued by the *Chandra* X-Ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-39073. This work was performed under the auspices of the US Department of Energy by the University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.